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Abstract

This paper investigates the use of shape-from-shading for object recogni-
tion. The local surface orientation information recovered using shape-from-
shading is shown to provide useful input to an appearance-based object recog-
nition scheme. We consider two representations which may be recovered
from shading information - the needle-map, and the local curvature shape-
index - and examine their relative performance for object recognition. Specif-
ically, we use a histogram-comparison technique, and focus upon the rel-
ative stability of the representations to small changes of viewpoint. We
demonstrate that the needle-map representation allows the view-sphere to
be spanned using a significantly smaller number of characteristic views than
using either the raw images or the shape index.

1 Introduction

Despite long-term interest in shape-from-hading (SFS), and psychophysical evidence that
it is a key process in 3D surface perception [15], there are few reports of its use in practical
object-recognition systems [27]. One of the principal reasons for this is the lack of robust
algorithms capable of recovering fine surface detail. Instead, much of the effort in the
literature has focused on appearance-based object recognition using either iconic [18] or
grey-scale manifolds [16]. This is a disappointing omission, since SFS can provide direct
information concerning surface topography, for example characteristic, or typical, views
[22, 19] and aspect graphs [10, 21].

View-based representations have recently been demonstrated to provide a powerful
means of recognising 3D objects [20, 4, 12, 17, 24]. In essence the technique relies on
constructing a distributed 3D representation which consists of a series of characteristic or
typical 2D views. For instance, Seibert and Waxman [20] have a Hough-like method in
which different views form distinct clusters in accumulator space. Gigus and Malik [4]
present a method for computing the aspect graphs of polyhedra in line-drawings using
visual events for faces, edges and vertices. Kriegman [12] uses the algebraic structure of
occluding contours, whilst Petitjean [17] has developed these ideas to extract visual event
surfaces for piecewise smooth objects. Several authors have considered the statistical
distribution of characteristic views. For instance Malik and Whangbo [14] have shown
that it is inappropriate to distribute the nodes of the aspect graph uniformly across the
view-sphere. In a similar vein, Weinshall and Werman have characterised both the likeli-
hood and stability of different characteristic views [24]. These ideas have been applied to
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the recognition of objects from large model-bases [23]. Meanwhile, Dorai and Jain have
recently shown how histograms of surface curvature attributes can be used to recognise
different views of curved objects in range images [3].

In practice, view-based object recognition is most easily realized if the different views
are organised using either a geometric or relational structure. An example of the former
is the view-sphere, while the latter is typified by the aspect graph. Although offering a
convenient view-based object representations, both the view-sphere and the aspect graph
have proved to be notoriously difficult to elicit from real-world imagery.

Our aim here is to consider how SFS can be used to generate a view-based repre-
sentation of object appearance, and how this can in turn be used for 3-D object recog-
nition using 2-D views. The starting point for our study is a recent series of papers
[26, 25] in which we have reported an improved shape-from-shading algorithm using
robust-regularizers. The main advantage of this method is to limit the over-smoothing of
fine curvature detail. The main contribution is to investigate whether needle-maps can
be used for 3D object recognition. We develop two alternative, histogram-based recogni-
tion strategies, the first using the surface normals directly, and the second based upon the
shape index of Koenderink and van Doorn [11].

The recognition strategies are evaluated on the Columbia University data-base of 20
arbitrarily-selected, real-world objects. Here we show that both representations provide
useful recognition performance. However, the surface-normal histogram is found to be
more effective than the shape-index histogram. A sensitivity study reveals that the method
offers significant discrimination to the differential topology of object appearance on the
view sphere. In other words, our needle-maps provide a viable computational basis for
automatically extracting characteristic views from 2D images of 3D objects.

2 Shape from Shading

Shape-from-shading (SFS) has been an active subject of research for over two decades,
and may be regarded as one of the classical problems of computer vision. In recent re-
search we have developed a SFS technique based upon the variational approach of Horn
and Brooks [1, 7, 8]. Our scheme addresses one of the main problems with the Horn and
Brooks technique - its tendency to over-smooth the recovered needle-map, leading to a
loss of detail in regions where the surface orientation varies rapidly. Several other solu-
tions have been proposed to this (e.g. [6]), but our research has shown that the apparatus
of robust statistics may be applied to the problem with encouraging results [26, 25].

In brief, we wish to solve the normalized image irradiance equation

E(x; y) = R(p; q) (1)

whereE(x; y) is the image of the object, andR(p; q) is the reflectance of a surface patch
oriented such that its normal has directionn = (�p;�q; 1)T . The quantitiesp andq are
the components of the surface gradient in thex andy direction respectively, i.e.p = @z

@x

andq = @z
@y

.
If the surface is assumed to have Lambertian reflectance properties, the brightness

of a patch will simply be proportional to the angle between the surface normal and the
light source direction,s. The image irradiance equation then becomesE(x; y) = n �
s. Unfortunately, this is under-constrained for the recovery ofp andq over most of an
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object’s surface. Hence, we must introduce an additional constraint on the smoothness of
the recovered needle-map. This is encoded by constructing an energy functional of the
form

I =

Z Z �
E(x; y)� n � s

�2
+ �

�
��

�@n@x

�
+ ��

�@n@y

��

dxdy (2)

where�� may be any regularization function, and� is a Lagrange multiplier. The first
term of this functional encodes the image irradiance equation. The second term uses the
derivatives of the recovered normals to penalize sharp changes of orientation according to
the function��.

Applying the calculus of variations and discretizing the resulting Euler equation, we
develop the following generalized update equation for iteratively estimating the surface
normals
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In the quadratic case where�� (�) = �2, this becomes the update equation used by
Horn and Brooks [1]. However, any other function may be used as the regularization
term, and we have investigated several robust measures, including the classical Tukey [5]
and Huber [9], and the Adaptive Prior Potential Functions of Li [13]. We also introduced
[25] a continuous version of the piecewise Huber robust estimator, described by

�� (�) =
�

�
log cosh

���
�

�
(3)

and found that this yielded the best results by offering a compromise between over-
smoothing and noise rejection/numerical stability.

3 Characteristic Views

The concept of a characteristic view (CV) is useful in appearance-based object recogni-
tion [22]. It stems from the desire to obtain arepresentative and adequate groupingof
views, such that a given level of recognition accuracy may be achieved using the minimum
number of stored views [3]. Clearly, this has important implications for the storage space
needed to represent each object, and the number of matches which must be performed at
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run-time for the purpose of recognition. View grouping has been addressed using CVs
and aspect graphs (AG). An aspect graph [10] enumerates all possible appearances of an
object, and the change in appearance at the boundary between different aspects is called
a visual event.

However, aspect graphs grow to unwieldy sizes for complex, non-polyhedral objects,
since all visual events are considered sufficiently important to define a new boundary
between aspects[17]. It is difficult to define a single face when an object is composed
of piecewise curved surfaces[12]. Even slight changes in viewpoint may result in more
of the curved surface(s) either coming into, or disappearing from, the view. Thus, either
the size of the aspect graph must be controlled using appropriate heuristics [23], or a less
rigid approach considered. We choose to adopt the latter course, and treat the concept of
a characteristic view in a more psychophysical manner, as a natural groupings of views.

A possible method of identifying natural CVs, in this sense, is to use clustering to
identify natural view groupings [20]. From a human perspective, all views of an object
which form a CV should “look” more similar to each other than to any view from a
different CV. If all the views within a CV are similar, then only one such view (or an
average view) need be stored and matched for recognition. It follows that the larger, on
average, each CV is, the fewer model views need be stored in order to span the view-
sphere, and the more efficient both the learning and recognition of objects will become.

The representation used for the model views has great influence upon the average
extent of the CVs. A representation which is relatively stable over a range of viewpoints
will result in larger CVs, on average, than one which changes greatly for small shifts in
viewpoint. However, this local invariance must not be at the expense of loss of detail,
since this will impair the ability to discriminate between objects.

4 Using SFS for Object Recognition

There are three obvious ways to utilize the orientation information encapsulated by the
needle-map. Most of the literature focuses exclusively upon the first of these; the inte-
gration of local orientation information to recover an approximation to the object surface
[6]. In the context of object recognition, this is most useful for model-based recogni-
tion. In practice, however, the accurate and reliable recovery of surfaces through SFS
has proved extremely difficult. The second approach is to use the needle-map directly.
In other words, instead of storing 2-D model views, we store2 12D models and match on
orientation information. A third approach is to calculate a physically meaningful local
surface description. An obvious example is local surface curvature.

4.1 Direct Use of Needle-Map

The needle-map is a valid representation for object recognition. In terms of dimension-
ality of the matching representation, it may be viewed as midway between model (3-D)
and appearance-based (2-D) recognition. However, since a series of model needle-maps
are needed for each object, it remains essentially an appearance-based technique. If we
deal with unit normals, two values are sufficient to describe the direction of each normal,
since the third component may be determined from the other two. Thus, matching can be
performed using 2-D vectors.
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4.2 The Shape Index

The differential structure of a surface is captured by the local Hessian matrix, which may
be approximated in terms of surface normals by
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where(� � �)x and(� � �)y denote thex andy components of the parenthesized vector re-
spectively.

The principal curvatures of the surface are the eigenvalues of the Hessian matrix,
found by solvingjH � �Ij = 0 for �, whereI is the identity matrix. Koenderink and van
Doorn[11] developed a single-value, angular measure to describe local surface topology
in terms of the principal curvatures. Thisshape indexis defined as

s =
2

�
arctan

�2 + �1

�2 � �1
�1 � �2 (5)

and may be expressed in terms of surface normals thus
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Figure 1 shows the range of shape index values, the type of curvature which they rep-
resent, and the grey-levels used to display different shape-index values. Dark regions
correspond to concavities, such as ruts, troughs and spherical caps, whilst light regions
indicate caps, domes and ridges.
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Figure 1: The shape index scale ranges from -1 to 1 as shown. The shape index values are encoded as a

continuous range of grey-level values between 1 and 255, with grey-level 0 being reserved for background and

flat regions (for which the shape index is undefined).

5 Experiments

To compare the different representations, we use a standard histogram recognition scheme
[2]. Although this does not take into account the spatial arrangement of an image, it is
useful in identifying CVs of objects, since it gives a good indication of the stability of
a representation to small changes of viewpoint. The behaviour of the different measures
under the histogram recognition procedure enables qualitative assessment of the repre-
sentations in terms of average CV extent.
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We measure the proximity between two images using the Bhattacharyya distance

B(PQ; PM ) = � ln

nX
i=1

q
PQ(i)� PM (i)

wherePQ is the query histogram andPM one of the model histograms.
Figure 2 illustrates the results of our experiments for 4 of the 20 images in the test set.

This image set is the Columbia Image Object Library, consisting of 20 arbitrary objects.
There are 72 views of each object, illuminated by a light source coincident with the cam-
era. The images are taken at5Æ intervals along a great circle of the object’s view-sphere.
Only around 9% of the view-sphere is spanned by these 72 images, underlining the need
for view grouping if appearance-based object recognition is not to require unfeasibly large
numbers of models.

The first row of Figure 2 shows the first image from each of the 72 view sequences
for 4 objects in the dataase. The second row shows the needle-maps recovered by the SFS
technique described in Section 2, whilst the third row displays the shape index classes
derived from the needle-map. The grey-levels correspond to the scale in Figure 1.

Rows 4-6 of Figure 2 show the histograms for each of the object representations in
turn. In each case, the leftmost bin corresponds to background pixels and is excluded
from the calculation of Bhattacharyya distance between the histograms.

Row 4 shows the grey-level histograms for the raw images, and Row 5 the 2-D his-
tograms of the needle-maps. Clearly, there is a great deal of variability in the structure of
these 2-D histograms.

The shape-index histograms of Row 6 are all broadly similar. Each is bi-modal, with
the two modes corresponding approximately to ruts and ridges/domes.

Figure 3 shows histogram ranking results for each of the representations. These are
average plots taken over all 72 images representing a given object. In each case, one of
the 72 images is chosen as the query image, and all 1440 images in the database ranked
according to their distance from this query. Clearly, the query image itself has zero self-
distance and hence is ranked 0. Views of the same object from similar viewpoints, i.e.
those with small angular deviations in any direction on the viewsphere, should come next
in the ranking, and so on. Each image in the set representing a given object is taken as
the query in turn, and an average ranking found for all images at a given angular distance
either side of the query. This is repeated for each of the object representations.

To establish CVs, we require a representation which provides a good ranking ability
over as wide a range of angular distance as possible. The surface normal representation
clearly meets this requirement in each of the cases shown. Specifically, it provides a
better ranking ability over a wider range of angular distances than the raw images. The
shape-index also does relatively well for the first two objects, but is unstable to even
small changes in viewing angle for the second pair of objects. The latter images contain
significant surface markings, resulting in rapid changes of albedo. These break the fun-
damental Lambertian assumptions underlying our SFS technique, leading to poor needle-
map recovery in these regions. The recovery errors are subsequently compounded in the
calculation of the shape-index.

Figure 4 shows the averaged ranking results, over the full�180Æ range of angular
distances. Here we display the result of taking each of the 1440 images as the query
image in turn and averaging the rankings of all images of the same object as the query.
The results are plotted as a function of the angular distance from the query. We use only
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one bin size for each representation. The shape-index does poorly in comparison to the
raw intensity images. However, there is a clear advantage in using the needle-map as the
average ranking remains much lower over a wider range of angular distances from the
query image.

6 Conclusions and Outlook

We have demonstrated that the needle-map is a useful representation for object recogni-
tion, proving more stable to small changes of viewpoint than raw intensity images. This
implies a significant saving in the number of model views which must be stored and
matched for each object.

We have also investigated the use of the shape index, a measure designed to capture
variations of surface curvature. Dorai and Jain[3] have recently reported excellent results
using this physically-motivated measure with range images, once again enabling signif-
icant grouping into CVs of an object to occur. However, in conjunction with SFS, the
shape index performs significantly worse than using the needle-map directly.

There is extensive scope for further work, not least because the results presented here
are derived using an extremely simple recognition technique. A more rigorous analysis is
needed of how many CVs need be stored to achieve the same recognition accuracy using
the needle-map and the raw image representations.
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Figure 2: Top row: Raw Images. Row 2: Recovered Needle-maps. Row 3: Shape In-
dex representation. Row 4: 25 bin grey-level frequency histograms. Row 5: 15x15 bin
2-D histograms of normal direction frequency. Row 6: 25 bin shape index frequency
histograms.
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Figure 3: Plots of average ranking vs distance from query over all images of a given
object. Each one of the 72 images of the object is taken as the query image in turn, and
all 1440 images in the database ranked according to their distance from this query. The
average ranking found for all images at a given angular distance either side of the query.
An angular distance of 1 represents the average of the images at�5Æ from the query.
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Figure 4: Plots of average ranking vs distance from query over all images in the database.
Each of the 1440 images is taken as the query image in turn. The dip around angular dis-
tance 18 (�90Æ), and the larger dip towards angular distance 35 (�180Æ), are attributable
to a number of the objects possessing approximate rotational symmetry of order 2 and 4
respectively.


