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Abstract

This paper describes a method for the segmentation of dynamic data. It
extends well known algorithms developed in the context of static clustering
(e.g., the c-means algorithm, Kohonen maps, elastic nets and fuzzy c-means).
The work is based on an unified framework for constrained clustering re-
cently proposed by the authors in [1]. This framework is extended by using
a motion model for the clusters which includes global and local evolution of
the data centroids. A noise model is also proposed to increase the robustness
of the dynamic clustering algorithm with respect to outliers.

1 Introduction

Many clustering algorithms try to approximate a set of data vectorsX = (x1; :::; xn) by
a smaller set of prototypesY = (y1; :::; ym). The main problem consists of computing
the number of prototypes and their locations in order to obtain the best fit, according to a
specific criterion.

This paper addresses dynamic clustering problems in which data is gathered during a
time interval. A new data set is observed at each time instant, requiring a dynamic update
of the classification results. The simplest idea to address this problem is to perform an
instantaneous classification of the data measured at each instant of time, neglecting the
previous data. The classic clustering algorithms, minimizing a fitness measure between
the model and the data, could be used at each instant of time (e.g., c-means, LBG method
[3, 4]). Unfortunately this approach leads to unacceptable results in most cases, i.e.,
classical methods cannot cope with dynamic clustering problems and they are not able to
deal with outliers.

This paper describes a more promising approach, based on the minimization of an
extended criterion which measures the model fitness, as before, but also accounts for the
available information about the motion of the clusters and prototypes. In addition, a noise
model is used to represent the outliers, increasing the robustness of the classifier.
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The choice of a motion model associated with the data clusters is a key issue. In some
problems, the motion of different clusters can be considered as independent (e.g., in the
case of a video sequence of moving objects, with a cluster associated to each object).
However, in other problems there is a coherent motion of all the clusters, according to
a global model (e.g., a change of illumination in a static scene modifies the RGB com-
ponents of each pixel, and the color centroids in a global way, e.g., by scaling the RGB
components by appropriate factors). In this case, all centroids suffer the same transfor-
mation. Both mechanisms will be considered in the motion model adopted in this paper,
in order to deal with a large class of problems in an unified way.

The methods developed in this paper are applied in the context of image and video
analysis. However, they can be used in other contexts as well. Previous applications in
clustering algorithms to dynamic scene analysis can be found in [5, 6, 7].

2 Problem Formulation

LetXt = (x1(t); � � � ; xn(t)); t = 1; 2; � � � be a sequence of data points organized inm(t)
clusters. We wish to estimate a set of centroidsYt = (y1(t); � � � ; ym(t)) to approximate
the data observed at the instantt.

It will be assumed that the centroid motion is due to a global transformation plus local
displacements, i.e.,

yj(t) = T [yj(t� 1)] + dj(t) (1)

whereT is a transformation which depends on a vector of unknown parameters,�t 2 <p;
dj(t) is the local motion of thej-th centroid which models the changes which can not
be explained by the global motionT . It should be stressed that�t is the same for all
centroids. In (1), it is assumed that

mX
j=1

dj(t) = 0 (2)

to force that transformationT accounts for translation effect, which otherwise could be
erroneously interpreted as a deformation.

To estimate the centroid locations we will define an energy function

E(D;�) = Edata(Y ) +Emotion(D;�) (3)

whereEdata is a data energy which measures the average distortion between data points
and centroids andEmotion is a motion energy which measures the motion changes;D =
(d1; � � � ; dm) being the sequence of local deformations1.

The optimal motion parameters (global and local) are obtained by the minimization
of the energy function with respect to both variables at each instant of time, i.e.,

( bD; b�) = argmin
D;�

E(D;�)

constrained by (2).

1the indext was dropped for the sake of simplicity.
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Figure 1: Fuzzy weights

3 Data Energy

Several criteria were proposed in the literature to measure the distortion between a data
setXt and a collection of centroidsYt. All of them can be used as data energy functions
in (3).

In some cases an explicitly link between the centroids and the observed data is con-
sidered, e.g., usingm springs linking each centroid to the nearest data point [8]. In this
paper, the associative process is not made explicitly but instead we adopt a fuzzy data de-
pendent energy which pulls the centroids towards regions with highest data densities (see
a related discussion in [9]). Some well known examples are the energies used in c-means,
Kohonen maps, elastic nets and fuzzy c-means [10, 11, 12]. It was recently shown that all
these energies are special cases of a fuzzy energy criterion defined by [1]

Edata(Y ) =

nX
i=1

mX
j=1

wj(i)kxi � yjk
2 (4)

wherewj(i); j = 1; � � � ;m are a set of weights which measure the influence of thei-
th pattern on thej-th centroid (see Fig. 1). The weightswj(i) depend on the chosen
method. In competitive learning algorithms, the weightswj(i) depend on the location of
all the centroids.

In this paper, we shall adopt the fuzzy energy (4), choosing the appropriate weights
if we wish the algorithm to behave like c-means, Kohonen maps, elastic nets or fuzzy
c-means (see [1] for details).

4 Noise Model

The data energy defined in (4) is unable to deal with outliers. All data points are con-
sidered as valid data and attract the centroids with a scale factor which depend onwj(i).
One way to overcome this diffficulty in static shape analysis is proposed in [2] by using a
noise model. This method is also useful in dynamic scene analysis.

If we wish to deal with outliers (data points or clusters which are not to be followed)
we must be able to segment the data, i.e., to separate valid data from outliers in a hard or
in a fuzzy way.
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One way to achieve this goal is by adding an additional model unit to represent the
noise patterns (noise unit). When the data points are bidimensional, the noise unit can be
interpreted as a plane in<3 parallel to the data space. This interpretation can be extended
to higher dimension data spaces, being the noise model a hyperplane in that case.

The distance of the data vectors to the hyperplane is constant, i.e., we can formally
assume that

kxi � ym+1k = c

where the prototypeym+1 is the projection ofxi on the hyperplane. The noise hyperplane
is used to represent data points which are far from centroids and which have a small link
wj(i) with them.

The energy function used in this case is a simple extension of (4) including the addi-
tional unit

Edata(Y ) =

nX
i=1

m+1X
j=1

wj(i)kxi � yjk
2 (5)

(the weightswj(i) are computed by the same expressions, but with an additional compet-
ing unit).

This is an elegant way to solve the data validation/association problem commonly
found in tracking applications (Bar-Shalom & Fortmann): the noise plane enables us to
validate the data and to associate it in a fuzzy way, using a criterion which resembles the
PDAF (Probabilistic Data Association Filter) algorithm proposed in [13].

5 Motion Model

It is assumed that centroids evolve dynamically according to

yj(t) = T [yj(t� 1)] + dj(t) (6)

whereT is a global transformation parametrized by a set of unknown variables�t and
dj(t) is a local motion or deformation. Two hypothesis will be made: i) the deformations
dj(t) should be as small as possible and ii) the transformation parameters change slowly
in time. These hypotheses suggest a motion energy defined by

Emotion(�;D) = 
1
Pm

j=1 kdj(t)k
2

+
2
Pp

j=1 k�j(t)� �j(t� 1)k2

The parametric transformationT depends on the problem under consideration. Two
examples are discussed bellow.

� Object Tracking

Let x1(t); � � � ; xn(t) denote the location of the edge points detected in an image
sequence with a moving object. We wish to approximate the object boundary by a
sequence of prototypes (image points)y1(t), � � �, ym(t) and track their evolution in
time.
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The problem can be formulated as before. An appropriate global motion model is
the affine transform

T [yj ] = Ayj + b (7)

which includes rotation, translation, scaling and shearing of the object shape in
every instant of time. The unknown parameters are:� = (A; b).

� Color Processing

Let x1(t); � � � ; xn(t) be vectors containing the RGB components ofn pixels ex-
tracted from the t-th frame of a video sequence. Clusters in color space may cor-
respond to different objects in the scene or to different parts of the same object.
Changes in illumination modify the RGB components of each pixel. In a first ap-
proximation this effect can be modeled by a scaling operation

T [yj ] = �yj (8)

where� is a scale factor.

6 Optimization

The minimization of (3) constrained by (2) can be achieved in a number of ways. It is
addressed in this paper by the optimization of an extended energy

~E(D;�) = E(D;�) + �








mX
j=1

dj








2

(9)

where� is a weight which tends to infinity during the minimization process (in the limit,
D will have a zero mean). This approach is simpler than the minimization of a Lagrangian
function for the same problem since it is not easy to obtain closed form expressions of the
Lagrange multipliers.

The optimization often requires the computation of partial derivatives. To compute
the partial derivatives of the data energy (5) we will use an auxiliary result. Given a fuzzy
energy (5), it is shown in [1] that

@Edata(Y )

@yj
= �j(yj � �j) (10)

where�j is the mass of the data points associated withyj (weighted by appropriate coef-
ficients) and�j is the corresponding mass center. The computation of�j ; �j depends on
the weightswj(i), defined by the user and also on the location of all centroids.

Using (10), the partial derivatives of the extended energy (9) are easily obtained

@ ~E

@dk
= �k (yk(t)� �k) + 
1dk + �

mX
j=1

dj (11)
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Figure 2: Two step optimization

@ ~E

@�j
=

mX
k=1

�k
@T

@�j

����
yk

: (yk(t)� �k) + 
2��j (12)

with �� = (�j(t)� �j(t� 1)).
The motion parameters(�;D) can either be estimated by the minimization of (9)

(e.g., using a gradient descent algorithm) or by solving a set of necessary conditions

@ ~E

@dk
= 0 k = 1; � � � ;m (13)

@ ~E

@�j
= 0 j = 1; � � � ; p (14)

Several methods exist to solve systems of nonlinear equations (e.g., the Newton Raphson
algorithm). A two step recursion is used instead. Each iteration consists of two steps
(see Fig. 2): i) the update of the masses and mass centers�j ; �j , using the most recent
estimates of the centroids Y and ii) the solution of (13,14) assuming that all�j ; �j are
constant i.e., assuming that they do not depend on Y.

The first step is trivial. All we have to do is to use the expressions of�j ; �j . The
second step depends on the motion model. If we choose one of the models described in
section 2, the partial derivatives (11,12) become linear if�j ; �j are kept constant. There-
fore, the second step is equivalent to the solution ofmN + p linear equations, whereN
is the dimension of the data space.

M

�
D

�

�
= r (15)

(see the expressions forM andr in Appendix).
The motion parameters(D;�) obtained from (15) are then used to update Y according

to (6) and to update�j ; �j . The convergence of the recursive algorithm is not guaranteed.
In practice, a small number of iterations (typically less than 10) is enough to achieve
stationary estimates for centroids.

The two step optimization algorithm is an example of a larger class of optimization
methods based on a set of auxiliary variables studied by Cohen in [14]. The two step
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Figure 3: Dynamic clustering of synthetic data with a global motion model

approach is also similar to the EM method proposed by Dempster et al. in the context of
statistic inference based on Fisher ML principle [15].

7 Results

To illustrate the performance of the method described in the paper, three examples are
presented bellow (one with synthetic data and two with real data).

In the first example, the data points are organized in three clusters. The true centroids
were generated with the motion model of section 5, using a scale factor� as the only
unknown parameter (see (8);� = t+7

t+6
was used to synthesize the centroid trajectories2).

Three Gaussian clusters were generated at each instant of time, centered at the centroids.
Figure 3 shows the trajectory of the true centroids, the estimates obtained by the method
described in the paper (small circles) and the data sets at three instants of time (t=1,5,9).
It is observed a good agreement between the true trajectories of the centroids and the
estimates derived from the observed data. It should be stressed that no matching was
performed between the data points obtained at different instants of time. The experiment
was performed using the weights of the c-mean algorithm.

Figures 4,5 show examples based on image sequences: a traffic sequence and an ul-
trasound sequence. Data points are the edges detected in the images by the Sobel edge
detector (noise reduction was performed in the ultrasound images). Thirty centroids were
used to approximate the object boundary. The unknown centroids are initialized near the
object boundary in the first image and they try to track the object assuming an affine mo-
tion model, as described in section 5. Figure 4,5 show the tracking results obtained by the
application of (15). Good results were obtained with real data, even when there is a partial
occlusion of the objects or a large number of outliers (edges belonging to other objects or
background). These results were obtained with the fuzzy c-means weightswj(i).

2the evolution law adopted for� keeps the average cluster velocity constant; the instantaneous velocity of
each centroid is a random variable due to the influence ofdj
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Figure 4: Dynamic clustering of a traffic sequence (affine model)

Figure 5: Dynamic clustering of an ultrasound sequence (affine model)
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8 Conclusions

This paper presented a class of algorithms for dynamic clustering. These algorithms are
obtained by an extension of a unified framework recently proposed by the authors for
static clustering applications. A dynamic model encompassing both the global and local
evolution of the centroids is considered, as well as the use of a noise model to achieve
robust clustering in the presence of outliers. The proposed algorithms were tested with
different motion models, using synthetic and real data. Accurate results were obtained in
problems which are not easily solved using static clustering methods.

The relationship with well known algorithms is clear: the proposed method provides
elegant extensions for several algorithms (e.g., c-means, Kohonen maps, elastic nets and
fuzzy c-means) converting these algorithms into useful tools for the classification of noisy
and dynamic data.

Appendix

Using the affine model (7), the partial derivatives (11,12) can be easily written asMX�r,
in matrix notation, where

M =

"
� + 
1I + �11T �Y � �1

(Y �)T� 
2I + (Y �)T�Y � (Y �)T�1
1T� 1T�Y � 
2 + 1T�1

#

r =

"
��


2A
� + (Y �)T��


2b
� + 1T��

#
where� = diag(�1; � � � ; �m), A�; b� are the affine parameters at the previous instant of
time,� is a matrix of centroids given by� = [�1; � � � ; �m]

T and1 ism� 1 vector of ones.
Similar results can be obtained for the scaling global transformation (8) used in the

first example of section 7.
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