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Abstract

To be able to understand the motion of deformable objects, techniques in im-
age processing and computer vision are essential for non-rigid motion anal-
ysis in this active research area. We have developed an integrated model that
combines the advantages of the boundary-basedand region-based approaches
and avoids problems caused by each stand-alone approach, e.g. overshrink-
ing, oversegmenting, noise sensitivity. This image segmentation model fur-
ther iteratively improves each submodel in both directions until it satisfies
predefined criteria. Different frame-to-frame prediction methods, naive, in-
flation, and optic flow, are developed and evaluated. Comparison between
our model and other models is studied and illustrated by examples.
Further improvements on our motion tracking model are possible by evaluat-
ing new attraction functions and prediction methods. Some important notes
on future work are given for incorporating other information (e.g. morpho-
metrics) into our integrated model in several aspects. This is expected to
improve our existing model and makes it a better research tool for scientists
to answer questions more accurately in a variety of application areas, e.g.
biomedial motion analysis, navigation.

1 Introduction

There has been a great deal of research interest in motion tracking [12] [1] [22] because of
its increasing popularity and applicability in a wide variety of applications, e.g. biomed-
ical analysis, target tracing, automated navigation. Non-rigid motion interprets a even
richer set of objects in the real world. Unlike rigid motion, no spatial relationships be-
tween fixed feature points on objects can be utilized as a priori knowledge to calculate
object depth and surface structure. Therefore, non-rigid motion is more difficult by its
nature. The goal of this research is to study the non-rigid motion tracking problem with
our integrated approach. This report will focus on the these issues: (1) How to get the
optimized image segmentation result on a single image by integrating boundary-based
and region-based approaches? (2) How to achieve better tracking results by making rea-
sonable redictions from previous contours? (3) Comparison between traditional and our
approaches. Applying our research in cell motion is mainly motivated by the followings:
Cells move and change their shape simultaneously and their displacements are usually
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too small to be perceivable by human eyes - manual tracking is almost impossible and
it is an error-prone process. Since cells are small, any algorithmic defects will play a
major role of propogating overall errors. Furthermore, most cells have different intensity
levels and very often unnoticeable boundaries as in Fig 1. These challenging intuitions
motivate our research that incorporates techniques in image processing, computer vision,
and numerical analysis [9] [17] for this non-rigid motion analysis. Most of these ill-posed
problems [4] [21] require regularization techniques and calculus of variations to find their
solutions. Firstly, we study and develop a promising image segmentation approach that
combines the advantages of region-based and boundary-based models and avoids com-
mon problems in those models. Unlike most integrated models, it is bi-direcrtional, i.e.
both submodels iteratively refine each other. With this new model, we can more precisely
identify objects of interest in the image and greatly reduce errors that might propagate
throughout motion sequences. We also compare and describe why we choose some spe-
cific submodels over others. Secondly, predicting the starting contour shape and location
is investigated and evaluated for a better selection of prediction methods. Thirdly, our
error estimation for comparison between traditional and our approach is based on experi-
ments from tracking both real and synthetic motion sequences. In the future, we will later
start exploring the possibility of incorporating information from morphometric analysis
[3] into the integrated tracking model to analyze motion and improve tracking.

2 Background

2.1 Image Segmentation

2.1.1 Boundary-Based Approach

To achieve image segmentation, traditional boundary-basedapproaches find object bound-
aries by locating intensity discontinuities and linking meaningful edges. Therefore, they
tend to be sensitive to local noise and do not have the dynamic behavior as active contour
models, also known assnakes[13]. To account for motion tracking, active contour mod-
els deform their contours with time. Thus, active contour models are the most appropriate
choice among boundary-based algorithms. [16] [2] A snake is defined as an energy-
minimizing spline under the influence of image forces and external constraint forces. The
internal forces serve to impose a piecewise smoothness constraint. The image forces push
the snake toward salient image features like edges. The external constraint forces are re-
sponsible for putting the snake near the desired local minima. Representing the position
of a snake byv(s) = (x(s); y(s)), the energy functional of the snake model is defined as
follows:

E�
snake =

R 1
0 [Eint(v(s)) +Eimage(v(s)) +Eext(v(s))] ds (1)

Snake models usually have the problem of overshrinking by their nature of attracting
contours to local minima. Therefore, some authors add an additional force to the en-
ergy equation and thisballoon forceis defined for inflating or deflating the snake [7].
Suppose we employ the image force asF = � P where the direction ofF implies
steepest descent inP . Equilibrium is achieved at points whereP is a minimum in the
direction normal to the curve. The forceF equipped with the new balloon force now
becomesF = k1n(s) � k2

rP
jP j wheren(s) is the normal unitary vector to the contour at
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pointv(s) andk1 is the amplitude control. The sign ofk1 controls the effect of inflation
and deflation. Their variations, dealing with topological change, different dimensions,
physically-based approaches, can be found in [15] [16] [19].

2.1.2 Region-Based Approach

To achieve image segmentation, most region-based algorithms mainly depend on pixel
statistics and how uniformly distributed intensity levels are in regions of interest. There-
fore, for objects with shaded regions, inaccurate segmentation is doomed to occur, e.g.
region growing methods[17] [9]. Some authors [20] develop a continuous version of Ge-
man’s model which can be solved using variational scheme. The functional is defined as
follows:

E(f;B) =

Z Z
R

w1(f � g)2dxdy +

Z Z
R�B

w2 jrf j
2
dxdy + w3 jBj (2)

whereR = image domain;B = union of segmented boundaries;g = original image data;f
= piecewise smooth image estimate;w1; w2; w3 = defined weights. Image segmentation
is performed by findingf andB which minimize this functional. Another image segmen-
tation method is called thegradient watershed model.[8] It is described by following the
drainage patterns of simulated rainfall on an image that can be used to partition an image
into watershed regions called hills and dales. The boundaries of hills correspond to ridge
tops and the boundaries of dales correspond to valley bottoms, so multiscale watershed
analysis provides an alternative method to study the scale-space behavior of ridges and
valleys for image segmentation. The computed boundaries of gradient watersheds corre-
spond closely to the edges of the original image. This is the main reason why we choose
the gradient watershed model over other region-based methods.

2.1.3 Hybrid Approach

Hybrid models for image segmentation are developed to avoid those common problems in
stand-alone boundary-based and region-based models. Most hybrid approaches [6] [23]
[18] are uni-directional, i.e. taking output from one submodel as input and computing
the other submodel but not vice versa. Actually, almost all uni-directional approaches
start with region-based submodels and then refine boundary-based submodels. One bi-
directional approach is performed by integrating two submodels by game theory. [5] Two
submodels are treated as two players playing a stochastic non-zero sum game. The game
stops when none of the modules can improve their positions. The final solution accounts
for the Nash Equilibrium. The interacting model is illustrated in Figure 2. Optimiza-
tion procedures can be viewed as minimizing cost functions using dynamic programming
techniques. Our segmentation problem can be formulated in the following structure that
minimizes two cost functionsFB andFR:

FB(pB ; pR) = fB(pB) + �fRB(pB ; pR);
FR(pB ; pR) = fR(pR) + �fBR(pB ; pR):

(3)

wherefB , fR: cost functions of boundary-based and region-based submodels;pB , pR:
boundary-based and region-based submodels;fRB : cost function of boundary-based in-
fluenced by region-based;fBR: cost function of region-based influenced by boundary-
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based;�, �: control coefficients. We have implemented our integrated model by an en-
hanced snake model and the gradient watershed model. The interactive influencesfRB ,
fBR on submodels in the new model are developed by our research. This scheme is
demonstrated to be a promising approach in terms of efficiency and accuracy.

2.2 Motion Tracking and Analysis

Apparent motion of in the images can be characterized by observing features or bright-
ness patterns. There are two distinct approaches: (1) Feature-based approaches assume
there is only rigid body motion and inter-frame correspondence has been established be-
tween features. and are based on extracting a set of relatively sparse, but discriminatory
features, such as corners, occluding boundaries. (2) Optic-flow-based approaches are
based on computing instantaneous velocities of brightness values in the images. For a
general review and framework on motion tracking, see [12] [1] [2] [10] [22]. Here we
only focus on (2).Optic flow is defined as the apparent motion of some brightness pat-
terns. [11] There are approximately three ways to compute optic flow: (1) gradient-based,
(2) matching-based, and (3) frequency domain based methods. Because gradient-based
methods are better investigated are commonly used in the literature, we focus on them in
more detail than the other two approaches. Gradient-based methods assume brightness
pattern will remain the same for a small time intervalÆt. I(x; y; t) is the image intensity
at (x; y; t), andx, y, t are coordinates and time. ExpandI around(x; y; t) using Taylor
series and discard second- and higher-order terms inÆx, Æy, andÆt. We obtain:

Ixu+ Iyv + It = 0 (4)

whereu = dx
dt

, v = dy
dt

, Ix = @I
@x

, Iy = @I
@y

, It = @I
@t

. Equation 4 is called theoptic
flow constraint equation, since it expresses a constraint on the componentsu andv of
the optic flow. This is an under-determined equation since we have only one equation
but two unknowns. Again, we solve this equation by imposing an additional smoothness
constraint , which is known asregularization. The equation is now as follows:

F =

Z Z
((u2x + u2y) + (v2x + v2y))dxdy + �

Z Z
(Ixu+ Iyv + It)

2dxdy (5)

To solve the problem of minimizing a functionalF , calculus of variations is employed.
The corresponding Euler equations yield the solution. [11] [14]

3 The Integrated Model

3.1 Boundary-Based Submodel

The enhanced active contour model we implement here as our boundary-based model is
the generally adopted boundary-based method for tracking. Interactive input through a
computer pointing device is most commonly used. One of the most popular functions
used as image force is image gradient because of its efficiency. In order to stabilize
gradients, two investigated solutions are used. One is normalization, i.e. keeping their
range from 0 to 1. This will reduce the contour moving step. The other is smoothing.
This will allow a wider range of contour points to move in the right direction, especially



392 British Machine Vision Conference

for plateau points. Now that we have placed the initial contour, we need to move these
contour points to optimal locations according to the energy minimization solution. The
balloon force is moving along the contour normal to avoid overshrinking. Most authors
in the literature apply fixed number of iterations to manually stop moving contour points
owing to their previous experience on certain sets of images. We use a flexible model of
checking contour length change, enclosed area change, enclosed gradient change, and/or

steady-support criterion[16] as inD(v) =
j
R
v
Pprev�

R
v
PnewjR

v
Pprev

, whereD is the relative

difference,P is one of the mentioned properties, e.g. gradient. If one and/or moreD’s
are less than a predetermined value, then the iteration process stops.

3.2 Region-Based Submodel

The major region-based approach investigated by our research for image segmentation is
the watershed model. The reasons we choose this model as opposed to other region-based
models are mainly because of its excellent visual correspondence of region boundaries
and high image gradients. The watershed model divides an image into subregions by
following gradient paths of local minima. Watersheds are achieved by assigning each
pixel the same subregion number as its local minimum. Region merging in the watershed
model is done by detecting difference in mean, variance, adjacent boundary length, and
edge strength to see if they satisfy a predetermined threshhold. Visually and noticeably
while compared with other approaches, the watershed model provides the remarkable
correspondence of boundaries and high image gradients which turn out very helpful be-
cause we are interested in the integration of information both from boundary-based and
region-based models.

3.3 Integration of Boundary-Based and Region-Based Submodels

To overcome previous problems by applying a single boundary-based or region-based
approach, the integration of the two models seems to be a reasonable and promising so-
lution in several aspects. Our approach is thus presented to interact these two modules,
boundary-based active contour model and region-based watershed model. The output of
one module is taken as input of the other for the purpose of optimizing results and vice
versa. It finally reaches an equilibrium after satisfying some mathematical constraints. Let
us leave out the image preprocessing and attraction function computation steps we have
implemented in our program. The sketch of our algorithm is as follows:Step 1:Apply the
pure region-based watershed model at this initialization step.Step 2:Apply the boundary-
based active contour model on image segmentation with a balloon force which moves in
a direction guided by the output of the region-based watershed model. Determining if the
balloon force should be moving along the inward or outward pointing normal is based on
how much a subregion is enclosed in our current contour. We compute the overlapping
percentage for each subregion against the current contour. If desirable percentage of over-
lapping is satisfied, then we assign each pixel in the entire subregion with�1, otherwise
we mark the entire subregion with+1. What this means is when we are optimizing a
boundary point in the active contour model, a region-based balloon force will direct this
point to maximize the area of the desirable region as well as minimize the energy term
in the active contour model. This is illustrated in Figure 3. The current boundary-based
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contour is drawn with dotted lines. ThefBR term in equation 3 is:�
R R

Ain
Ir(x; y)dA,

where the negative sign means “minimizing the enclosed areaAin” from the segmented
regionsIr. Step 3:Apply the region-based watershed model on image segmentation with
a merging constraint which forces some subregions to be merged in a way influenced by
the boundary-based active contour model. Candidate subregions are selected based on the
overlapping constraint. We compute the overlapping constraint for each subregion against
the output contour from the boundary-based model. If desirable percentage of overlapping
is satisfied, then we assign each subregion with a�, otherwise we discard the subregion.
We merge these subregions into a new region. We thereafter continue our region-based
process and test if this new region can be further merged. This is illustrated in Figure
4. All subregions marked with a� are to be merged and this new region will be further
merged with other regions according to the watershed model merging rules. ThefRB
term in equation 3 is:

P
(i;j)2Ain

(Ii;j � Pi;j)
2 +

P
(i;j)2Aout

(Ii;j �Qi;j)
2, whereAin

represents pixels inside the contour area,Aout represents pixels outside the contour area,
P andQ are pixel intensities inside and outside the contour area, andI is the mean of the
target region.Step 4:Repeat Steps 2 and 3 until the defined stopping criteria are satisfied.
Step 5:Apply a selected frame-to-frame prediction method described in section 3.4 and
restart from Step 1. Figure 5 illustrates the results from pure and integrated models. Our
integrated model has two outputs, optimized boundaries and regions as shown.

3.4 Frame-to-Frame Prediction Method

The prediction methods we have implemented are used to initialize the starting contour for
the next frame by results generated in the current frame. That means as long as we place
our initial contour at the first frame, ideally motion tracking for the entire image sequences
will be done automatically without further input. Three methods are investigated. The
first method is a very naive guess using exactly the optimized contourCt at framet as
starting contour at framet + 1. We then go on and optimizeCt+1. The second method
uses a similar scheme as in the first, but we expand about the centroid ofCt with an
inflation factor and use this newC 0

t as starting contour forCt+1. In the third method,
we compute image optic flow [11] from framet to t + 1 and use this as a constraint to
computeC 0

t, which is again used as starting contour forCt+1. From experiments, we see
that second and third approaches perform better among these methods. However, in the
second approach some scaling factors make the predicted starting contour too far away
from the image gradients and thus it is not as effective in a general sense.

3.5 Error Estimation

To estimate the errors from the above algorithms we have implemented for image motion
tracking, we demonstrate by their performance on both real and synthetic image motion
sequences which contain randomly generated translation, rotation, scaling, and intensity
levels by our program. Our synthetic sequence generating program also outputs the true
boundary solutions for comparison purposes. The experimental results are illustrated in
Figure 6 and Table 1.
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Error Estimation Test 1 Test 2 Test 3 Test 4
average Euclidean (pixels) 1.64 0.73 1.31 0.65
length (percent) 0.90 0.90 25.14 1.00
area (percent) 36.02 2.45 35.10 1.02
max axis angle (percent) 0.02 0.01 15.25 0.02
compactness (percent) 25.00 0.01 12.41 0.01

Table 1: Error estimation after tracking synthetic and real image motion sequences (1)
pure active contour model on synthetic sequences (2) integrated model on synthetic se-
quences (3) pure active contour model on real sequences (4) integrated model on real
sequences

4 Conclusion

As we addressed our motivations and concerns earlier, , the following major tasks have
been achieved: (1) To achieve desirable image segmentation which combines the advan-
tages of boundary-based and region-based models, we develop a promising bi-directional
integrated model. In this model, we simultaneously solve some common problems en-
countered by using traditional boundary-based and region-based stand-alone models. (2)
We further evaluate this integrated model by tracking motion sequences of deformable
objects with different frame-to-frame prediction methods. (3) Finally we compare our re-
sults with traditional methods on real and synthetic sequences. This work can be used as a
tool for tracking and analyzing deformable objects in motion sequences, e.g. biomedical
image analysis, automated surveillance and navigation, target tracing, intelligent image
editing. Although there is a trade-off between the more complex integrated model and
traditional models, accuracy of analyzing deformable objects is always the main concern
and this model occasionally outperforms others in efficiency because of good initial es-
timations for convergence. Future work can be further investigated on several aspects.
New attraction functions and prediction methods can be developed because they con-
tribute most of the errors. Morphometric analysis [3] can be experimented to refine the
model in prediction and adaptive schemes.
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Figure 1: An example of cells in an image
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Figure 2: The bi-directional integrated model
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Figure 5: After tracking (left to right): (1) final frame (2) pure active contour model (3)
our snake submodel (4) our watershed submodel

Figure 6: After tracking (left to right): (1) pure active contour model on synthetic se-
quences (2) integrated model on synthetic sequences (3) pure active contour model on
real sequences (4) integrated model on real sequences


