Up:
Thresholding for Change Detection
Previous:
8 Conclusions
References
-
1
-
M. Bichsel. Segmenting simply connected moving objects in a static
scene.
IEEE Trans. PAMI
, 16:1138-1142, 1994.
-
2
-
S.C. Brofferio. An object-background image model for predictive video
coding.
IEEE Trans. Communications
, 37:1391-1394, 1989.
-
3
-
I. Dinstein. A new technique for visual motion alarm.
Pattern Recognition Letters
, 8:347-351, 1989.
-
4
-
H.J. Eghbali. K-S test for detecting changes from Landsat imagery data.
IEEE Trans. on Systems, Man, and Cybernetics
, 9:17-23, 1979.
-
5
-
T.J. Ellis, P. Rosin, and P. Golton. Model-based vision for automatic
alarm interpretation.
IEEE Aerospace and Electronic Systems Magazine
, 6(3):14-20, 1991.
-
6
-
S.B. Gray. Local properties of binary images in two dimensions.
IEEE Trans. Computers
, 20:551-561, 1971.
-
7
-
Y.Z. Hsu, H.H. Nagel, and G. Rekers. New likelihood test methods for
change detection in image sequences.
CVGIP
, 26:73-106, 1984.
-
8
-
R. Jain. Extraction of motion information from peripheral processes.
IEEE Trans. PAMI
, 3:489-504, 1981.
-
9
-
R. Jain and H.-H. Nagel. On the analysis of accumulative difference
pictures from image sequences of real world scenes.
IEEE Trans. PAMI
, 1:206-214, 1979.
-
10
-
T.F. Knoll, L.L. Brinkley, and E.J. Delp. Difference picture algorithms
for the analysis of extracellular components of histological images.
J. Histochem. Cytochem.
, 33:261-267, 1985.
-
11
-
D. Koller, J. Weber, and J. Malik. Robust multiple car tracking with
occlusion reasoning. In
Proc. ECCV
, pages 189-196, 1994.
-
12
-
A. Makarov. Comparison of background extraction based intrusion
detection algorithm. In
Int. Conf. Image Processing
, pages 521-524, 1996.
-
13
-
L. O'Gorman. Binarization and multi-thresholding of document imnages
using connectivity. In
Symp. on Document Analysis and Info. Retrieval
, pages 237-252, 1994.
-
14
-
A. Papoulis.
Probability, Random Variables, and Stochastic Processes
. McGraw-Hill, 1991.
-
15
-
A. Pikaz and A. Averbuch. Digital image thresholding based on
topological stable state.
Pattern Recognition
, 29:829-843, 1996.
-
16
-
P.L. Rosin. Edges: saliency measures and automatic thresholding.
Machine Vision and Applications
, 9:139-159, 1997.
-
17
-
P.L. Rosin. Thresholding for change detection. Technical Report
ISTR-97-02, Brunel University, 1997.
-
18
-
P.L. Rosin and T. Ellis. Image difference threshold strategies and
shadow detection. In
British Machine Vision Conf.
, pages 347-356, 1995.
-
19
-
P.K. Sahoo, S. Soltani, A.K.C. Wong, and Y.C. Chen. A survey of
thresholding techniques.
CVGIP
, 41:233-260, 1988.
-
20
-
A. Singh. Digital change detection techniques using remotely-sensed
data.
Int. J. Remote Sensing
, 10:989-1003, 1989.
-
21
-
K. Skifstad and R. Jain. Illumination independent change detection for
real world image sequences.
CVGIP
, 46:387-399, 1989.
-
22
-
P. Sprent.
Applied Nonparametric Statistical Methods
. Chapman and Hall, 1993.
-
23
-
G.J.G. Upton and B. Fingleton.
Spatial Data Analysis by Example, Volume 1, Point Pattern and
Quantitative data
. Wiley, 1985.
-
24
-
H. Voorhees and T. Poggio. Detecting textons and texture boundaries in
natural images. In
Proc. ICCV
, pages 250-258, 1987.
-
25
-
Y.H. Yang and M.D. Levine. The background primal sketch: An approach for
tracking moving objects.
Machine Vision and Applications
, 5:17-34, 1992.
Up:
Thresholding for Change Detection
Previous:
8 Conclusions
Paul L Rosin
Mon Jun 23 08:34:37 BST 1997