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Figure 9: The target ‘�’ and one-step ahead prediction ‘+’ value, of the shape parameter
b1 (top) andb5 (bottom), in each of the eight separate walks between the dotted vertical
lines. The directions followed by the pedestrian are from left to right 1.%, 2.-, 3.!,
4. , 5.", 6.#, 7.&, 8... Each walk is shown in 44 frames and the test set contains 352
patterns.
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5 Discussions

The task of tracking walking pedestrians in an outdoor scene can be regarded as one
of modelling the spatial-temporal behaviours of a moving deformable object. Once
an appropriate representation form, astate vector, for the object concerned is acquired
from an image sequence, we can employ some nonlinear dynamic models to learn these
state vectors, trying to find out the underlying characteristics or at least the empirical
regularities behind these apparent phenomena. The successfully established system would
be ready for forecasting the future behaviours of the state vector.

We have introduced a neural network based motion tracking system to perform the
above task. A compact state vector consisting of the first 5 significant shape parameters
and two directional displacements has been chosen to represent the most likely changes
in the shape contour and the moving directions. The prediction system then comprises
a set of seven related but separately trained neural network models, each is responsible
for modelling one variable of the compact state vector. The model architecture has been
designed to capitalise on crucial spatial-temporal variations in the raw data. The system
has been trained using real-world, noisy data sequence of limited types of walks and
number of frames. Special attention has been paid to solving the overfitting problem
by exploiting the cross-validation technique. An initial evaluation of the system has
been made and results presented. The one-step ahead prediction performance on an
independent test sequence has been very encouraging.

Further studies include the use of other generalisation enhancement techniques and
theoretically well-established frameworks such as Bayesian learning framework [11],
hybrid mixture experts network [12]. We are particularly interested in the automatic
determination of relevant inputs for a model, the investigation of multi-step ahead
prediction of the behaviours of the pedestrian, the integration of the current system into
the video rate motion tracking demonstrator.

Acknowledgments : The authors thank Adam Baumberg for valuable discussions.
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Figure 8: The histograms of the connection weights obtained in modellingb 1 after 1; 000
training epochs (left) when the model achieved the best generalisation performance and
after 3; 000 training epochs (right) when the model was overfitted.

best prediction performance on the test set, though in this area the performance of the
model on training set is much worse than that on both training and test set. This example,
however, vindicates the effectiveness of cross-validation technique.

In addition, in the case of modellingb1, Figure 8 gives the distributions of the model’s
connection weights obtained at two distinctive points : at 1; 000 training epochs or the
chosen optimum stopping point and at 3; 000 training epochs when the learning error
approached its minimum value about 0:116. In the later case, the apparent increase
in standard deviation of the distribution means that, with more training epochs, more
quantisation levels are needed to encode the connection weights of the model, thus
increasing the complexity of the model in the sense of large description length [5].

Training process : Take the process of modellingb1 for example, the model was started
with a random weight set with uniformly distributed values between[�0:1; 0:1]. The
nominal learning rate used for weight set update wasr = 0:04, but if the fan-in of a
node isn, the actual learning rate for a weight leading to this node would ber

0

= r=n.
This was very effective in avoiding the instability problem that is often seen in training
a model with large fan-in, this also helped to smooth out the fluctuations in validation
error for the ease of identifying the optimal stopping point. No momentum term has been
involved in the iteration formula. The connection weights were updated following every
12 input patterns, but a training pattern only appeared once in one epoch.

System performance :In the same way as modellingb1, we have obtained 7 models each
being responsible for tracking one particular variable of the compact state vector. Five
runs were conducted each time with a different initial weight set. The model with the
smallest validation error was chosen as the final solution. Due to the limited space, only
the prediction results for shape parametersb1 andb5, are given in Figure 9 where the true
values of the test set are also depicted for comparison. It can be observed that our models
have followed neatly the peaks and troughs of the test data across the eight typical walks,
capturing the underlying characteristics of these motion trajectories.
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Figure 7: The rms errors versus number of epochs for the training data (solid lines) and
validation data (dashed lines). The validation errors suggested that the learning process
stop at around 1; 000 epochs in modellingb1 (left) and at around 400 epochs in modelling
dx (right). The decisions were corroborated by the respective prediction performance on
an independent test set, shown in dotted lines.

The cost function used was the summed square errors between the true valuex

t+1 of
a variable at timet+ 1 and the predicted output ˆx

t+1 of its corresponding model, running
over the entire training setS,

E =

1
2

X

t2S

(x

t+1 � x̂

t+1)
2

(2)

4.1 Cross-validation

Having made clear the problems we had, cross-validation technique was chosen to prevent
the training process from overfitting the network. The two elements of the technique are
to acquire an independent validation set and to make decision on early stopping when it
is needed.

The procedure : For each of the eight walk sequences, we randomly chose (without
replacement) about 1=8th of its patterns to form a validation set of 48 patterns, the
remaining 372 patterns constituted the final training set. In training each model, the
validation error was monitored, it decreased initially, during which period the model
learned more and more the structural information of the training data, it then started to rise
when the model attempted to fit the sampling noises, signifying that the training process
should stop.

This phenomenon can be observed from Figure 7 which gives the performance
curves in learning shape parameterb1 andx-directional displacementdx. In the case of
modellingb1, the error on training data continued the trend of decrease with prolonged
learning process, the longer the better, while the error on validation set took a slow
U turn roughly in the region between 1; 000 and 1; 200 epochs, with a minimum rms
error about 0:155, which conformed to the region where the minimum prediction error
was obtained. The same story was true for modellingdx, the validation error had its
minimum value about 0:322 in the region around 400 epochs where the model gave the



British Machine Vision Conference

b b b b dy

D D D D

t-4t-3

7

t-2t-1t

1 2 3 5

NN NN NN NN NN NN NN
1 2 3 4 5 6 7

7 7 7 7 7

35 35 35 35 35 35 35

1

state vector sequence

1 1 1 111

dxb4

predicted state vectort+1

t-4

hidden units

dx dy

memory units

one-to-one fixed connection

...

t+1

time, including b1 .. b5 and dx, dy, only 20  shaded inputs are "on" for modelling b1

35 input units arranged into 5 state vector of 7 variables each according to

t-3t t-1 t-2

b b1 5

Figure 5: The system for modelling
and predicting compact state vector
sequences that describe the spatial-
temporal variations of a pedestrian walk-
ing along eight different directions rela-
tive to the camera.

Figure 6: The general neural network archi-
tecture adopted for modelling individual vari-
ables of the compact state vector, displayed
is for shape parameterb1. The net has one
hidden layer with 8 units, each is associated
with a memory unit via a one-to-one fixed
connection.

inputs, which can be the result of non-uniform sampling, and the memory units which
act as an exponential filter bank to always keep atrace of the activations emerged in the
hidden units, or

H

t

= aH

t�1 + (1� a)H

t

(1)

whereH
t

is the average hidden layer activation vector, exponentially weighted over the
past;H

t

is the current activation vector;a is a constant close to 1. This type of model is
often referred to as simple recurrent network (SRN) [9]. The only difference here is the
realisation of the memory unit, instead of using Eq: 1 the SRN simply keeps a copy of the
hidden units activation vector, orH

t

= H

t

.
The total number of connection weights for modelling the changes in shape parameter

b1 is 241. Note that the actual connections between the input and hidden layer may differ
from variable to variable based on our observations on the significance that each input is
likely to have on the predicted variable. In Figure 6 only the 20 shaded input units are
connected to the hidden layer for modellingb1.1

4 The experimental studies

Given the system introduced above, we can now proceed to train these networks using
the on-line back-propagation learning algorithm [10]. Our primary concern was the study
of ways to improve the models generalisation performance, as, for this practical task, the
major issue is network overfitting caused by the real-world, noisy, and especially limited
number of training patterns, recalling that only one walk sequence is available for each of
the eight moving directions and the maximum size of the training set is of the same order
as the number of connection weights, e.g. 420 versus 241 in the case ofb1.

1It would be ideal to let the model decide its significant inputs automatically, like the automatic relevance
determination (ARD) theory [11].
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Figure 4: The training data for two components of the compact state vector: the shape
parameterb1 (left) andb5 (right). The dotted vertical lines mark the beginning and end
of each of the eight separate walks in line with the moving directions of the pedestrian,
from left to right, 1.%, 2.-, 3.!, 4. , 5.", 6.#, 7.&, 8...

Firstly, acompact state vector consisting of the first five shape parameters (b1, � � �, b5)
and the two directional displacements (dx; dy) is chosen to describe the appearance of a
pedestrian at an instant. The five shape parameters represent the major variations that a
shape contour is likely to have over the period of time within the scene. Figure 4 shows
the data forb1 and b5 in the training set. In the plot ofb 1, the empirical periodicities
look quite clear in most of the eight walks except for walk 5." and 6.#, whereas, the
plot of b5 shows a different picture in these two cases. Note that it is these regular
characteristics of the data we need to model to track the motion of the object. Note also
that though higher indexed shape parameters beyondb5 can be added up to the compact
state vector, the higher the index is, the less regular or more noisy the shape parameter
will be, contributing but trivial changes in shape. The two directional displacements
(dx; dy) specify the object’s moving direction, thus also defining the likely changes in
shape contour.

Secondly, each final training pattern for the system is formed by concatenating the
compact state vectors over a period of five frames. This is to properly account for
the temporal variations of the motion trajectories as well as smooth out its short-term
fluctuations. Also, the system can now have chance to explore the nonlinear interactions
between shape parameters over the time. In the end, we are left with a total of 420 training
patterns and 352 test patterns.

3.2 The prediction system

We now present the motion tracking system which is to be trained using the data described
above. The system diagram is given in Figure 5 where the inputs are the current and
time-delayed compact state vectors and the output is the predicted state vector. There
are seven neural network models, each is responsible for modelling one variable of the
compact state vector (b1; � � � ; b5; dx; dy) and is trained in a separate session.

The architecture for each individual model is given in Figure 6. It has a single linear
output unit and up to 8 hidden units each having a hyperbolic tangent transfer function.
The dynamics of the model lies in the cooperative effects between the time-delayed
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2.2 The data sets

The two sets of image sequences were processed according to previous discussions. The
results are, for a pedestrian present, a sequence ofstate vectors each taking the form of
15 shape parameters, (b1; b2; � � � ; b15), plus two measurements (x; y) giving the position
of the shape contour in image coordinates. In the discussions followed we choose to use
the directional displacements (dx; dy) of the shape within two adjacent frames instead of
(x; y).

The training set contains eight separate walks, the record length is 58 frames for
walk ‘ ’, 48 frames for walk ‘.’, and 59 frames for the rest. This gives us initially a
total of 460 state vectors for training purpose. Thetest set also contains eight separate
walks, each lasting for 49 frames. There are therefore a total of 392 state vectors in the
test set. Note that the test image sequences were recorded some months later and under
different weather and lighting conditions. The camera’s viewpoint was also subject to
slight changes relative to that in the training case. For each walk, the start and finish
positions as well as the actual trajectory followed are all different from the cases in the
training set.

3 Neural networks for motion analysis

The use of state vector sequence to describe the walking trajectory of a pedestrian makes
Kalman filters an immediate choice for modelling the human motion. In fact, detailed
studies have been carried out and a Kalman filter based video-rate tracking system [1]
has achieved some impressive results, though the system adopted several simplified
conditions and linearity assumptions, such as the requirement ofconstant motion, uniform
sampling rate, and that each shape parameter is treated (filtered)independently of the
others by using a one-dimensional Kalman filter, thus ignoring the nonlinear interactions
between the components of the state vector. These conditions, though quite reasonable
in many circumstances, may be inappropriate in other situations, resulting in a tracking
system susceptible to noise.

3.1 The formation of training data

In view of the potential problems above, alternative solutions are sought to use neural
networks to learn the motions of walking pedestrians. The effectiveness of a neural
network based system depends on the design of appropriate models as well as the
formation of good training examples in the sense that they preserve as much useful
information as possible of the state vector sequences. The main advantages of such
a system are to accommodate non-uniform motion, variable sampling rate and that the
trained neural network models can be used aspredictors to forecast the future moves
of individual pedestrians, i.e. the change in shape contour and moving direction. This
prediction can be extended to multi-step ahead such that the occlusion of objects (the
missing of the whole or part of the shape contour for a number of frames) during tracking
process can be recovered, alleviating a major problem in motion tracking.

Based on experience with the current motion tracking system and initial experiments
conducted on the data sets, we have come up with the following decision on the formation
of training data :
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Figure 1: The first and last frame of training image sequence for each of the eight typical
walks. The walk", for example, shows the pedestrian walking away from the camera.

(a) (b)

Figure 2: The boundary points
and the principal axis of a walk-
ing pedestrian silhouette (a). The
approximating cubic B-spline with
40 control points (b).

Figure 3: The effect of varying the first mode
of variation, or the eigenvector with the largest
eigenvalue, by�1:5 standard deviations from
themean shape vector, representing the shape
contour in the middle.

(over 300) for a shape are then reordered against a chosen reference point and approxi-
mated by a cubic B-splineof 40 controlpoints. Figure 2 shows the extracted shape contour.

Eigenshape analysis :The control points, orx0 = (x

i

; y

i

); i = 1; � � � ; 40, of cubic
B-splines from several hundred frames of the eight walk sequences are aligned. From
these aligned shapes a linear point distribution model (LPDM) [8] is then obtained. The
model includes an 80-dimensionalmean shape vector x, an 80� 80 covariance matrix
and a subset ofm eigenvectors P = (p1;p2; � � � ;pm) corresponding to them most
significant modes of variations.

Shape parameters :Given the LPDM above, an arbitrary shape vectorx

0 can now be
represented byx0 = x+ Pb, whereb = P

T

(x

0

� x). b = (b1; � � � ; bm) are henceforth
called shape parameters which are the data we are to work on in the remainder of this
paper. The left and right two shapes of Figure 3 show the changes occurred from the
mean shape by varying shape parameterb1 to a certain degree.
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models to automatically learn the typical nonlinear spatial-temporal behaviours that a
pedestrian has demonstrated while walking along different directions. This learning
process is not subject to any prior assumption or restriction on the circumstances when
the motion occurs, e.g. the type of motion, the sampling rate, provided that the data
sequences available for learning preserve significant information related to this motion.

The task we faced can be stated as follows: Given astate vector that describes the
shape contour, scaling factor and position of a pedestrian in image coordinates, and the
knowledge of its status for the current and last few time steps, a nonlinear dynamic
system based on neural networks is required to learn the spatial and temporal variations
underlying the motion that has given rise to these state vector sequences. After the system
is established, it can be used to predict the future moves of the pedestrian one-step and/or
multi-step ahead, thus following the pedestrian across the scene. In fact, the task is a
multivariate time series prediction orregression problem with the number of predicted
variables (the components of the state vector) being equal to that of predictors, and
moreover, the state vector could have more than a dozen components, this distinguishes
the current task from other well-studied time series prediction problems, e.g. [5] [6] [7].
Another apparent difficulty regarding this task is the shortage of data, as the training
set only has some eight different walk sequences each providing just over 50 training
patterns.

The major issues addressed in this paper include the design of motion tracking system
and selection of appropriate neural networks adequate for the task, the formation of
training patterns to preserve essential information of original data sequences facilitating
the learning process of a model, and the exploration of techniques for the enhancement
of the generalisation performance of the system. In the next section we discuss the
significance of the data sequences, starting with a brief introduction to the modelling of
deformable objects. In Section 3, the idea of using neural networks to learn the spatial-
temporal behaviours of the motion is explored, the prediction system and component
model architecture are proposed. In Section 4 experiments are conducted to evaluate the
system’s performance using cross-validation techniques. The paper concludes in Section
5 with some discussions of relevant issues.

2 The task domain

A typical outdoor scene shown in Figure 1 was studied. This shows a pedestrian walking
across the scene in his normal manner along eight different directions as indicated. Two
sets of image sequences have been recorded, respectively, for the purpose of training the
proposed system and validating it. We now outline the process of generating state vectors
from these image sequences.

2.1 Modelling of deformable objects

Shape extraction : In this task, the class of objects of interest are the 2D silhouettes of
walking pedestrians. The moving object is firstly segmented to obtain a binary image.
Morphological filters are applied to remove some fragmentation or to fill gaps. Con-
nected regions satisfying certain constraints are then segmented from the binary image,
which are traced clockwise to produce a chain of boundary points. The boundary points
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Abstract

A new method is proposed of tracking the motions of walking pedestrians
from a video image sequence. The motions of a pedestrian are firstly
summarised by sequences ofstate vectors and each state vector defines
a 2D shape contour as well as the position of the pedestrian in image
coordinates. Next, the task of tracking the motions is addressed in the context
of multivariate time series prediction on the data sequences, and neural
networks are designed to model the spatial-temporal variations underlying
the motion trajectories. The neural network based tracking system, after
being properly configured and trained, is capable of tracking eight typical
motions of a walking pedestrian despite the state vector sequences being
highly noisy and each having a very short record length. In fact, the system
has learned to synthesise sequences (and their representative motions) it has
never seen before.

1 Introduction

The accurate tracking of human movement in an outdoorscene has been a very challenging
issue in machine vision. This problem represents an example of the analysis of the motion
of non-rigid or deformable objects, which basically involves two tasks: The first is
to identify and summarise the deformable object of interest, dealing mainly with the
extraction and characterisation of static spatial variations of the object from original
images. There exist a range of models that could be used for describing this object. The
second task is to follow the object being focused through the image sequence, given a
spatial-temporal model that has either been constructed based on some prior knowledge
of the underlying motion or been learned automatically from the empirical regularities in
observations of its many movements. In this paper we concern ourselves with the second
task, assuming that the first task has been properly completed, see e.g.[1], which makes
available a sequence ofstate vectors for us to carry on tracking.

In recent years there has been substantial research towards the tracking of motions
of various kinds for a variety of objects or visual curves, either rigid or non-rigid [2] [3]
[4], though the efforts are largely geared towards using traditional techniques, typically
(linear) Kalman filters and their various modified versions with the help of some dedicated
assumptions and constraints. We are interested, however, in employing neural network


