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Abstract

This paper describes a spectral-spatial model (for colour object
recognition)which exploits the shape,colour and position of regionson
the surfaceof arigid objectin describingit. Givena modelandtestimage
(with colour constancypre-processingksuitably segmentedinto colour
regions, model and test regions with similar shape and colour are
identified. If at leastthreemodelregionshavematchingtestregionsthen
the consistencyof thesematchesare verified using distance/areaffine
invariantratios. Subsequentlymodel regionsare affine transformedinto
imagespacefor matching,from which a match probability is determined.
Experimentakesultsdemonstratehat this modelis significantly invariant
to illumination changes, affine deformity and partial occlusion.

1 Introduction

In [12] a spectral-spatiamodel (which was usedfor colour objectrecognition)called
the colour landmark model (CLM) was preseniedvhich wassignificantinvariantto
illumination changesaffine deformity and partial occlusion.This paperextendsthat
model by: improving robustnessn shapematching; more adequatelydescribingthe
objectmatchprobability; andintroducingaffine invariantarea/distanceatiosto verify
matchesbetweenmodel and image regions. To demonstratehe performanceof the
extended model, a set of test results are presented.

The CLM represents significantdeviationfrom the "stateof the art" spectral-spatial
objectmodels[7], [8], and[10] which arebasedon the colour regionadjacencygraph
(CRAG); however, it bears resemblance @pectralpart of the model)to the spectral-
basedcolour histogrambasedmodelspresentedn [3], [9] and[13]. Quite strikingly,

the CRAG modelis capableof representinghon-rigid objects,howeverthe sub-graph
matching procesd resulting from a search farmodel CRAG sub-graphin animage
CRAG O is computationallyexpenseEven moreémportantly,the CRAG is incapable

of representingnon-adjacentregions which often result when considering only
prominentcolours.In noneof theseCRAG implementationdiasthe problemof colour
constancy been seriously addressed, thus ignoring the effects of biased colour values!!
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The CLM was formulated to overcome the before-mentioned problems of the CRAG
althoughthe currentimplementationis restrictedto rigid objectmodellingd andto
providea matchprobability measurelt describeghe n (generallyn>=3; howevern=2

is also allowed and treatedseparately)regionson the surfaceof a rigid object by
selecting nof these regions as references and describimpgositionsof the remaining
n-n regionsfrom thesereferencesThesereferenceregionsare formally known as
colour landmarks
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Figure 1. An Overview of the CLM Based Object Recognition System

As illustratedin Figurel, a colourtestimageis introducedinto the systemandis pre-
processedy a colour constancyalgorithm [5] (CCA) which transformsmodel and
image coloursinto the samecanonicalillumination colour spacefor matching.Since
colour constancyis a pre-processingtep,any CCA could have beenused.The test
imageis then suitably segmentednto colouredregions(using a modification of the
colour softwarefilter [11] describedn earlier work) and the shape,colour, centroid
and area of these regions recorded.

The secondstageof the systemis concernedwith the matchingof modelandimage
regions based on their colour, shape and affine invariant distance/area ratiogh&/hen
numberof modelregionsis greaterthan or equalto three,it is necessaryor at least
three of these regions to be matched with image regions (for the minimum
requiremenif six points neededfor affine transformationparameterestimation).By
comparing model and imagéfine invariantdistanceratios (betweerregioncentroids)
and arearatios, the consistencyof thesematchedregionsis determined;this step
removesmodel/imageregion mismatchesSubsequentlyn, pairs of thesematching
model/imageregionsare usedas colour landmark In the specialcaseof two region
objects, shape,colour, and the affine invariant area ratio are usedto determine
model/image matches.

In the final stage,the centroidsof the colour landmarksare usedin an affine
transformation estimation process. These parametersare used to transform the
centroidsof eachnon-landmarkmodel region into image space.lf there are image
regionscloseto (in a Euclideansense}hesetransformedmodelregionsd which are
of the samecolourd thena matchis recordedThe overallnumberof these matches
is used to determine the match probability.



2 The CLM Parameterisation

The CLM is characterisedy the parametersL, R, A, D> where:L ={lq, I, ..., In}
the setof n| landmarkregions;R = {r4, ra, ..., ry} thesetof n, non-landmarkegions;
A, the matrix of areapair ratios; and D, the matrix of distance(betweenregion
centroids) ratios. Each region (landmark and non-landmark)is parameterisedy:
(XaYo) the centroidof the region; I4i, an affine invariantmomentfor differentregion
resolutions;a;, the absoluteareaof the region; and C, the region colour whereC =
{(@a1,b7), (a2,by), ..., (&,bx)} where(a;,by) arethe setof histogrambin co-ordinatesf a
cluster in a 2D opponent colour histogram space.

3 Colour Segmentation using the Software Colour Filter

The softwarecolour filter (SCF)[11] is usedto segmenimultiple imagesinto regions
of similar colour. It performsthis segmentatiorn two stepsfirst, it identifiesdistinct
coloursin the imagesto be segmentedthenit determineswvhich of thesecoloursare
similar. The SCFusesthe opponentcolour space[1] which transformsRGB into two
chroma (rg and by) and an intensity channel (wb):

rf= R-G [1]
by=-R-G +2B [2]
wb=R+G+B [3]

By discardingthe wb and quantisingthe rg andwb channelginto 16 x 16 bins) and
recordingthe frequencyof coloursin an RGB image,a 2D opponentcolour histogram
is generated.

Clusterscorrespondingo distinct coloursare identified in thesehistogramsusing a

one-pass peak climbing clustering algorithm [B)e implementatiorof this algorithm
usedproceedsdy determiningfor eachhistogrambin, whetheranotherhistogrambin

in its 8-neighbourhoodhasa greaterbin count.If sucha bin is found, thenthe current
bin pointsto it. This procesds repeatedor all the binsin the colour histogram after
which any bin that doesnot point to anotherbin is a parentbin (local maxima).This

parentbin and all the other bins that point to it form a clusterin histogramspace
representing a distinct colour.

Given two images(pre-processethy a CCAJ[5]), 2D opponentcolour histogramare
generated,and correspondingmodel/test histogram clusters identified. Histogram
cluster correspondenceequiresa measureof cluster overlap and closenessof the
parentbins of theseclusters.The selectedneasurds a crosscorrelation,of the model
and image colour histogram bin clusters, defined by:

O(ab)= ¥ H,(x +a,y +b) xH (X, ) 2

where H, and H are given by:
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where H(x,y) is the 2D opponent colour histogram ofrtioelelimageandC, is the set
of histogrambins correspondingo a distinct colour (clusterCy) 00 H; is createdusing
the opponentcolour histogramof the testimage;anda, b = 0, %1, ..., £ d. The
resultingbinsin the correlatedspaceO(a,b)are clustered(using the above-mentioned
clusteringalgorithm).If a parentbin existwithin a chessboardistanced from O(0,0)
thentheseclustersare correspondinglusters.The correlationusedis isotropic since
the relative position of model/image clusters is difficult to predict.

4 Shape Matching and Verification

In orderto identify colour landmarks,the shapeof model and imageregionsof the

samecolour are compared.lt is important that all test regionswith minor shape
distortionsbe consideredsinceshapeerrorsdueto occlusion,colour segmentatiomnd
image noise may have occurredismatchedegionsareremovedoy comparingmodel
andtestaffine invariantareaanddistanceratios. Sincethe shapedescriptomeededo

betolerantof noisy borders,a region-basediescriptor(affine invariantmoments)was
chosen.

Giventhe discreteform of the (p+q) ordermomentof a binary imagefunction f(x,y),
the general momentgnand the central momenp, are defined by:

My, =5 > X"y f(xy) [5]
x oy

M pq =zz(x X))y =Y. ) F(xy) [6]

wherexC = mlo/m00 andyC = m01/m00. Further,a secondorderaffine invariantmoment
I1 [4] can be defined:

2
_ (Hpolp = Ky
I, = 2
Hoo
I1 is less sensitiveto digitalisation errors, minor shapedeformations,cameranon-

linearity and non-idealcamerapositionsand is less expensivecomputationallythan
higher order moments.

[7]

To model digitalisation errors in 1; due to scale reduction, moment values are
calculated for all regions at a numberdifferentresolutions Givena modelregion, |1

is calculatedfor successivelhalvedresolutions.For a model/imageshapematch,the
calculatedvalueof the momentl, for thetestregionmustfall within the rangedefined
by the model.If only a single modell; is calculated(dueto the region’s small area)
then this is the minimum allowed value of the image region moment. This simple
methodof modelling the variationin I; was sufficient sinceit was requiredonly to



distinguish between dissimilar region shapes.In the experimentsperformed, a
maximum of three moment values)(vere used.

Assumethatafterfeature(shape/colourinatching,modelregionsml1, m2,m3 andm4
have matching image regions rl, r2, ..., r10:

my: Iq, Ip

My I3, Iy, I5
Mms: I'e, I7, I'g, I
Mmy: o

Now, by comparingarearatios of model region pairs (mym,, m;ms, ..., Mgm,) with
correspondingmagepairs (e.g.for modelpair mym,, imagepairsrirs, rifs, rifs, rars,
rors and grs) the consistency of the image pairs is determifredany modelpair mm,
(i>}), the consistency of image pair4is determined from:

|Aj - A' cd <Tarea [8]
_ _a .o,
given . =— and A'_ =—F%
AJ aj cd a.d

wherea, g anda, ay areabsoluteareasof modelandimagepairs, respectively;and
Tarea IS @ pre-definedthreshold.If it is further assumedhat two occurrencesf the
model exist, rirsrerip androrsrg, in the testimage,thereforethe resulting match pair
lists are:

M1 My r1lz, lols

M1 Mg3: I1lg, lolg, I1I7
miMmy: 1o

MoMmg3: I3lg, Islg
MoIMy: I3lo

M3My: el10

wherethe image pair rir; is purposelymismatchedlt is thenrequiredto determine
thoseregionswhich arerelatedby consistentarearatios. In the aboveexamplethese
are{ry, rs, re, r1o}, {ru, s, re, r7, r1io} @and{r, rs, ro}. Distanceratiosareusedto further
determinethe consistencyof a given set of regions;for threeregionsr, r' andr”
(which havebeenmatchedwith modelregions,saym;, m, andm; respectively)three
(however only two areindependentgffine invariantdistanceratios betweencentroids
of these regions can be calculated:

dv de  and  9r [9]

whered, is the Euclideandistancebetweerthe centroidof regionr andr’ (similarly
for d» and G ).



The consistencyof the three image regions can be determinedby comparingwith
corresponding model distance ratios using a root mean square measure:

1
\/FZ(a —b)" <Tyq [10]

whereg is thelist of n modeldistanceratiosandb; the correspondindist of n image
distance ratios; and Tgs a pre-defined threshold. For three regions, n=2 for

independentratios. By selecting groups of three regions from a given list, the

consistency of these region is determined. Subsequently, a minimum afdhsigtent
regions(which will be usedascolourlandmarks)reidentified. Affine parametersire
estimatedfrom these three pairs of matched model/imageregions and a match
probability is calculated(Section5). In the experimentpresentedhreeregionswere
usedfor colour landmarks(n, = 3) sincethe modelshad a relatively small numberof

coloured regions.

5 Model Region Transformation and Match Probability

Given the centroids of the landmark regions (X Y’) and the corresponding image
regions (X%, Y;), affine transformation parameters a, b are estimated using [1H3f n
or [12] if n>3:

XT=[X, X0 X, 1 YT S[YLY,, Y, T

a' =[a,,a,,a,], b" =[b,,b,,b,] and

m X, Y, O

: il

% X, Yom
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A= 1|
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@' X”\ Y”\@
a=A"X,b=A"Y [11]
a=(ATA)HATX), b=(ATA)}(ATY) [12]

The centroid (X,y’) of eachnon-landmarkmodel region is affine transformedinto
image space where the new centroid (x,y) is given byAa and y =Ab, whereA =[1
X" y']. Now, if any image region with centroid (¥;) satisfies:

JOX=x, )2 +(y —y,)? <T, [13]



(whereTy is a pre-definedthreshold)and the two regionsare the samecolour thena
match is recorded. The total numbetrminsformedegionmatcheplusthe numberof
landmarkss the overallnumberof region matchesn’. The probability for n” matches
is approximated by the function (suitably normalised):

1
k [h +1
n
wheren is the total numberof modelregionsandk is a constantk=3 is usedin these

experiments) Clearly however,any function with similar characteristicxould have
been used.

P(n',n,k)=1- [14]

6 Implementation and Results

The database illustrated in Figure 2 was used in the experiments described. CLMs were
generatedor eachmodelimageby creatinga 16x16 2D opponentcolour histogram

and applying the clustering algorithm describedin Section 3 to identify distinct
histogram clusters. For each identified cluster a binary image was generatedby

filtering all pixels whosecolour did notfall within the histogramclusterand copying

all remaining pixels to the binary image (which was the samesize as the model
image).
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Figure 2. A reduced model database of coloured objects.

The boundariesof the image regionsin thesebinary imageswere locatedusing a
boundaryfollow algorithm, eachregion boundaryfilled (all of the pixels within the
boundarywere turned on) and the area, centroid, and momentl,' calculatedfor a
maximum of three successivdiglvedregionresolutionsTheseparametersaswell as



the histogrambin co-ordinatesand values,for eachhistogramcluster,werewritten to
the landmark files and stored in the model database.

Given a testimage, its CLM was generatedand comparedwith eachmodel in the
databaseFor a given comparisonmodel and image regionsof similar colour were
identified using correlation matching (the SCF in Section 3). Affine invariant moments
wereusedto determinematchingmodelandtestregions.The numberof mismatched
regionswerereducedusingaffine invariantareaanddistanceratios (Section4.1). For

each set of hypothesis model regions, affine transformation parameterswere
determined and the regions transformed. The match probability was then calculated.

@) (b) (© (d)

Figure 3. A data set of test images.

The test images illustrated in Figure 3 were used to test the CLM. These images were
captured under random illumination and illustrate problems of reduced scale, affine
deformity, shadows, and partial occlusion.

O 209 219 | 1.6e+05| 6.0e-13 | 6.4e-08 | 6.7e-05 |
1 O 542 | 81 1.7e+04 | 1.4e-08
2
3

1 495 | 153 | 2.2e+04 | 6.3e-09 | 2.2e-04
3 445 | 196 | 3.0e+04 | 1.1e-09 | 4.9e-06
Table 1. The region parameters for the Oxford thesarus model.

The region parametersalculatedfor the Oxford thesarusmodel image and the test
imagein Figure 3(b) showthe valuesof the affine invariant momentof the original
region resolution ¢f) and succesively halved resoltiohg, 1,%). Table1 illustratesthe
Oxford thesarusmodel region parameters:colour number (representinga colour
histogrambin cluster), the centroid (x,y) of the region, its areaand as previously
describingthe variation of 1, with reducedscale. The blank entriesin the table
representregion resolutionsbelow a thresholdof about1% of the total image area,
therefore { was not calculated.

The region parameterscalculatedfor the test image illustrated in Figure 3(b) are
illustratedin Table 2. The correspondingnodeland imageregionsare model region
numbers0, 1,2 and 3 and imageregion numbersl, 2,5 and 9, respectively.The
moment value for image region 0 (7.3e-11)is boundedby the calculated model
momentvalues(6.0e-13and 6.7e-05);and single momentvalue (1.4e-08),calculated



for modelregionl, representshe minimumallowedmomentvaluefor imageregion2
(3.8e-06).

| _Region | Colour | x | y | Area | 1, |

0 0 324 230 2.1e+05 6.0e-13
1 1 182 242 5.9e+04 7.3e-11
2 1 412 219 3.9e+03 3.8e-06
3 1 525 340 3.9e+03 5.7e-06
4 2 88 70 1.8e+04 3.8e-09
5 2 366 260 7.5e+03 3.7e-07
6 3 90 56 3.7e+03  2.8e-06
7 3 250 71 2.6e+03  6.5e-04
8 3 333 294 3.9e+03 1.9e-05
9 4 328 271 9.1e+03 1.6e-07

Table 2. Region parameters for the test image illustrated in Figure 3(b).

Theresultsof matchingthe databasegainstthe testimagesetis illustratedin Figure

4. For test imag8(a), the modelyielding the largestmatchprobability wasthe Pattern
RecognitionJournal,0.97. All modelstestedagainsttestimage 3(b) yield a match

probability of 0.0 exceptthe Oxford Spanishdictionary(0.87) andthe Oxford thesarus
(1.0). For 3(c) the Turbo Paascaimodel was matchedcorrectly (0.92), howeverthe

Harrap’smodelwas not detectecbecauseonly two prominentcolour regionsexist at

reducedresolution.If not occluded,asin this case the single arearatio is consistent.
Finally the Oxford thesarusvasagainrecognisectorrectly (1.0) with all other model

probabilities of 0.0 except the Oxford Spanish dictionary (0.71).

Figure 4. The localised models for the test image set illustrated in Figure 3.

7 Conclusion

A spectral-spatiaimodel for colour object recognition has been presented,which
describes rigid objects. It has been shown through experiments thabtiesis viable
and provides solutionsto some of the common problemsof the CRAGs, namely
computationabxpensadueto sub-graphmatchingandthe modellingof non-adjacent
regions.Sincethe affine invariantmomentsusedin the CLM are somewhat expense
computationally alternativeaffine invariantdescriptorswill be examined specifically
the contour descriptor in [2]. Also, a CRAG will be addethe CLM sothatit will be



ableto exploit the benefitsof regionadjacencyandnon-rigidity while maintainingthe
features of the CLM.
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