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Abstract

This paper describes a spectral-spatial model (for colour object
recognition) which exploits the shape, colour and position of regions on
the surface of a rigid object in describing it. Given a model and test image
(with colour constancy pre-processing) suitably segmented into colour
regions, model and test regions with similar shape and colour are
identified. If at least three model regions have matching test regions then
the consistency of these matches are verified using distance/area affine
invariant ratios. Subsequently, model regions are affine transformed into
image space for matching, from which a match probability is determined.
Experimental results demonstrate that this model is significantly invariant
to illumination changes, affine deformity and partial occlusion.

1    Introduction

In [12] a spectral-spatial model (which was used for colour object recognition) called
the colour landmark model (CLM) was presented   which was significant invariant to
illumination changes, affine deformity and partial occlusion. This paper extends that
model by: improving robustness in shape matching; more adequately describing the
object match probability; and introducing affine invariant area/distance ratios to verify
matches between model and image regions. To demonstrate the performance of the
extended model, a set of test results are presented.

The CLM represents a significant deviation from the "state of the art" spectral-spatial
object models [7], [8], and [10] which are based on the colour region adjacency graph
(CRAG); however, it bears resemblance (the spectral part of the model) to the spectral-
based (colour histogram based) models presented in [3], [9] and [13]. Quite strikingly,
the CRAG model is capable of representing non-rigid objects, however the sub-graph
matching process   resulting from a search for a model CRAG sub-graph in an image
CRAG   is computationally expense. Even more importantly, the CRAG is incapable
of representing non-adjacent regions which often result when considering only
prominent colours. In none of these CRAG implementations has the problem of colour
constancy been seriously addressed, thus ignoring the effects of biased colour values!!
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The CLM was formulated to overcome the before-mentioned problems of the CRAG 
although the current implementation is restricted to rigid object modelling   and to
provide a match probability measure. It describes the n (generally n>=3; however n=2
is also allowed and treated separately) regions on the surface of a rigid object by
selecting nl of these regions as references and describing the positions of the remaining
n-nl regions from these references. These reference regions are formally known as
colour landmarks.

Figure 1.  An Overview of the CLM Based Object Recognition System

As illustrated in Figure 1, a colour test image is introduced into the system and is pre-
processed by a colour constancy algorithm [5] (CCA) which transforms model and
image colours into the same canonical illumination colour space for matching. Since
colour constancy is a pre-processing step, any CCA could have been used. The test
image is then suitably segmented into coloured regions (using a modification of the
colour software filter [11] described in earlier work) and the shape, colour, centroid
and area of these regions recorded.

The second stage of the system is concerned with the matching of model and image
regions based on their colour, shape and affine invariant distance/area ratios. When the
number of model regions is greater than or equal to three, it is necessary for at least
three of these regions to be matched with image regions (for the minimum
requirement of six points needed for affine transformation parameter estimation). By
comparing model and image affine invariant distance ratios (between region centroids)
and area ratios, the consistency of these matched regions is determined; this step
removes model/image region mismatches. Subsequently, nl pairs of these matching
model/image regions are used as colour landmark. In the special case of two region
objects, shape, colour, and the affine invariant area ratio are used to determine
model/image matches.

In the final stage, the centroids of the colour landmarks are used in an affine
transformation estimation process. These parameters are used to transform the
centroids of each non-landmark model region into image space. If there are image
regions close to (in a Euclidean sense) these transformed model regions   which are
of the same colour   then a match is recorded. The overall number of  these  matches
is used to determine the match probability.



2    The CLM Parameterisation

The CLM is characterised by the parameters <L, R, A, D> where: L ={l 1, l2, ... , lnl
}

the set of nl landmark regions; R = {r 1, r2, ... , rnr
} the set of nr non-landmark regions;

A, the matrix of area pair ratios; and D, the matrix of distance (between region
centroids) ratios. Each region (landmark and non-landmark) is parameterised by:
(xc,yc) the centroid of the region;  I1i, an affine invariant moment for different region
resolutions; ar, the absolute area of the region; and C, the region colour where C =
{(a1,b1), (a2,b2), ... , (at,bt)} where (ai,bi) are the set of histogram bin co-ordinates of a
cluster in a 2D opponent colour histogram space.

3  Colour Segmentation using the Software Colour Filter

The software colour filter (SCF) [11] is used to segment multiple images into regions
of similar colour. It performs this segmentation in two steps; first, it identifies distinct
colours in the images to be segmented; then it determines which of these colours are
similar. The SCF uses the opponent colour space [1] which transforms RGB into two
chroma (rg and by) and an intensity channel (wb):

rg =   R - G [1]
by = -R - G + 2B [2]
wb = R + G + B [3]

By discarding the wb and quantising the rg and wb channels (into 16 x 16 bins) and
recording the frequency of colours in an RGB image, a 2D opponent colour histogram
is generated.

Clusters corresponding to distinct colours are identified in these histograms using a
one-pass peak climbing clustering algorithm [6]. The implementation of this algorithm
used proceeds by determining, for each histogram bin, whether another histogram bin
in its 8-neighbourhood has a greater bin count. If such a bin is found, then the current
bin points to it. This process is repeated for all the bins in the colour histogram, after
which any bin that does not point to another bin is a parent bin (local maxima). This
parent bin and all the other bins that point to it form a cluster in histogram space
representing a distinct colour.

Given two images (pre-processed by a CCA[5]), 2D opponent colour histogram are
generated, and corresponding model/test histogram clusters identified. Histogram
cluster correspondence requires a measure of cluster overlap and closeness of the
parent bins of these clusters. The selected measure is a cross correlation, of the model
and image colour histogram bin clusters, defined by:
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where Hm and Ht are given by:



Hm(x,y)  = {  0  (x,y)  ∉   Ca

                 {  H(x,y) (x,y)  ∈   Ca

where H(x,y) is the 2D opponent colour histogram of the model image and Ca is the set
of histogram bins corresponding to a distinct colour (cluster Ca)   Ht is created using
the opponent colour histogram of the test image; and a, b = 0, ±1, ..., ± d. The
resulting bins in the correlated space O(a,b) are clustered (using the above-mentioned
clustering algorithm). If a parent bin exist within a chessboard distance d from O(0,0)
then these clusters are corresponding clusters. The correlation used is isotropic since
the relative position of model/image clusters is difficult to predict.

4    Shape Matching and Verification

In order to identify colour landmarks, the shape of model and image regions of the
same colour are compared. It is important that all test regions with minor shape
distortions be considered since shape errors due to occlusion, colour segmentation and
image noise may have occurred; mismatched regions are removed by comparing model
and test affine invariant area and distance ratios. Since the shape descriptor needed to
be tolerant of noisy borders, a region-based descriptor (affine invariant moments) was
chosen.

Given the discrete form of the (p+q) order moment of a binary image function f(x,y),
the general moment mpq and the central moment µpq are defined by:

m x y f x ypq
p q

yx

== ∑∑∑∑ ( , ) [5]

µµ pq
yx

c
p

c
qx x y y f x y== −− −−∑∑∑∑ ( ) ( ) ( , ) [6]

where xc = m10/m00 and yc = m01/m00. Further, a second order affine invariant moment
I1 [4] can be defined:
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I1 is less sensitive to digitalisation errors, minor shape deformations, camera non-
linearity and non-ideal camera positions and is less expensive computationally than
higher order moments.

To model digitalisation errors in I1 due to scale reduction, moment values are
calculated for all regions at a number of different resolutions. Given a model region, I1
is calculated for successively halved resolutions. For a model/image shape match, the
calculated value of the moment I1 for the test region must fall within the range defined
by the model. If only a single model I1 is calculated (due to the region’s small area)
then this is the minimum allowed value of the image region moment. This simple
method of modelling the variation in I1 was sufficient since it was required only to



distinguish between dissimilar region shapes. In the experiments performed, a
maximum of three moment values (I1) were used.

Assume that after feature (shape/colour) matching, model regions m1, m2, m3 and m4
have matching image regions r1, r2, ..., r10:

m1: r1, r2
m2: r3, r4, r5
m3: r6, r7, r8, r9
m4: r10

Now, by comparing area ratios of model region pairs (m1m2, m1m3, ..., m3m4) with
corresponding image pairs (e.g. for model pair m1m2, image pairs r1r3, r1r4, r1r5, r2r3,
r2r4 and r2r5) the consistency of the image pairs is determined. For any model pair mimj

(i>j), the consistency of image pair rcrd is determined from:
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where ai, aj and a'c, a'd are absolute areas of model and image pairs, respectively; and
Tarea is a pre-defined threshold. If it is further assumed that two occurrences of the
model exist, r1r3r6r10 and r2r5r9, in the test image, therefore the resulting match pair
lists are:

m1m2: r1r3, r2r5

m1m3: r1r6, r2r9, r1r7

m1m4: r1r10

m2m3: r3r6, r5r9

m2m4: r3r10

m3m4: r6r10

where the image pair r1r7 is purposely mismatched. It is then required to determine
those regions which are related by consistent area ratios. In the above example these
are {r 1, r3, r6, r10}, {r 1, r3, r6, r7, r10} and {r 2, r5, r9}. Distance ratios are used to further
determine the consistency of a given set of regions; for three regions r, r’ and r’’
(which have been matched with model regions, say m1, m2 and m3 respectively), three
(however, only two are independent) affine invariant distance ratios between centroids
of these regions can be calculated:
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where drr’ is the Euclidean distance between the centroid of region r and r’ (similarly
for drr’’  and dr’r’’ ).



The consistency of the three image regions can be determined by comparing with
corresponding model distance ratios using a root mean square measure:
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where ai is the list of n model distance ratios and bi the corresponding list of n image
distance ratios; and Tdist a pre-defined threshold. For three regions, n=2 for
independent ratios. By selecting groups of three regions from a given list, the
consistency of these region is determined. Subsequently, a minimum of three consistent
regions (which will be used as colour landmarks) are identified. Affine parameters are
estimated from these three pairs of matched model/image regions and a match
probability is calculated (Section 5). In the experiments presented three regions were
used for colour landmarks (nl = 3) since the models had a relatively small number of
coloured regions.

5    Model Region Transformation and Match Probability

Given the centroids of the nl landmark regions (Xi’, Y i’) and the corresponding image
regions (Xi, Yi), affine transformation parameters a, b are estimated using [11] if nl =3
or [12] if nl>3:
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a A X== −−1 , b A Y== −−1 [11]

a A A A XT T== −−( ) ( )1 , b A A A YT T== −−( ) ( )1 [12]

The centroid (x’,y’) of each non-landmark model region is affine transformed into
image space where the new centroid (x,y) is given by x = Aa and y = Ab, where A = [1
x’ y’]. Now, if any image region with centroid (xr,yr) satisfies:

( ) ( )x x y y Tr r d−− ++ −− <<2 2 [13]



(where Td is a pre-defined threshold) and the two regions are the same colour then a
match is recorded. The total number of transformed region matches plus the number of
landmarks is the overall number of region matches n’. The probability for n’ matches
is approximated by the function (suitably normalised):
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where n is the total number of model regions and k is a constant (k=3 is used in these
experiments). Clearly however, any function with similar characteristics could have
been used.

6    Implementation and Results

The database illustrated in Figure 2 was used in the experiments described. CLMs were
generated for each model image by creating a 16x16 2D opponent colour histogram
and applying the clustering algorithm described in Section 3 to identify distinct
histogram clusters. For each identified cluster a binary image was generated by
filtering all pixels whose colour did not fall within the histogram cluster and copying
all remaining pixels to the binary image (which was the same size as the model
image).

Figure 2.  A reduced model database of coloured objects.

The boundaries of the image regions in these binary images were located using a
boundary follow algorithm, each region boundary filled (all of the pixels within the
boundary were turned on) and the area, centroid, and moment I1

i calculated for a
maximum of three successively halved region resolutions. These parameters, as well as



the histogram bin co-ordinates and values, for each histogram cluster, were written to
the landmark files and stored in the model database.

Given a test image, its CLM was generated and compared with each model in the
database. For a given comparison, model and image regions of similar colour were
identified using correlation matching (the SCF in Section 3). Affine invariant moments
were used to determine matching model and test regions. The number of mismatched
regions were reduced using affine invariant area and distance ratios (Section 4.1). For
each set of hypothesis model regions, affine transformation parameters were
determined and the regions transformed. The match probability was then calculated.

  (a)         (b) (c)      (d)
Figure 3.  A data set of test images.

The test images illustrated in Figure 3 were used to test the CLM. These images were
captured under random illumination and illustrate problems of reduced scale, affine
deformity, shadows, and partial occlusion.

Region Colour x y Area I1
0 I1

1 I1
2

0 0 209 219 1.6e+05 6.0e-13 6.4e-08 6.7e-05
1 0 542 81 1.7e+04 1.4e-08
2 1 495 153 2.2e+04 6.3e-09 2.2e-04
3 3 445 196 3.0e+04 1.1e-09 4.9e-06

Table 1.  The region parameters for the Oxford thesarus model.

The region parameters calculated for the Oxford thesarus model image and the test
image in Figure 3(b) show the values of the affine invariant moment of the original
region resolution (I1

0) and succesively halved resoltions (I1
1, I1

2). Table 1 illustrates the
Oxford thesarus model region parameters: colour number (representing a colour
histogram bin cluster), the centroid (x,y) of the region, its area and as previously
describing the variation of I1 with reduced scale. The blank entries in the table
represent region resolutions below a threshold of about 1% of the total image area,
therefore I1 was not calculated.

The region parameters calculated for the test image illustrated in Figure 3(b) are
illustrated in Table 2. The corresponding model and image regions are model region
numbers 0, 1, 2 and 3 and image region numbers 1, 2, 5 and 9, respectively. The
moment value for image region 0 (7.3e-11) is bounded by the calculated model
moment values (6.0e-13 and 6.7e-05); and single moment value (1.4e-08), calculated



for model region 1, represents the minimum allowed moment value for image region 2
(3.8e-06).

Region Colour x y Area I1

0 0 324 230 2.1e+05 6.0e-13
1 1 182 242 5.9e+04 7.3e-11
2 1 412 219 3.9e+03 3.8e-06
3 1 525 340 3.9e+03 5.7e-06
4 2 88 70 1.8e+04 3.8e-09
5 2 366 260 7.5e+03 3.7e-07
6 3 90 56 3.7e+03 2.8e-06
7 3 250 71 2.6e+03 6.5e-04
8 3 333 294 3.9e+03 1.9e-05
9 4 328 271 9.1e+03 1.6e-07

Table 2.  Region parameters for the test image illustrated in Figure 3(b).

The results of matching the database against the test image set is illustrated in Figure
4. For test image 3(a), the model yielding the largest match probability was the Pattern
Recognition Journal, 0.97. All models tested against test image 3(b) yield a match
probability of 0.0 except the Oxford Spanish dictionary (0.87) and the Oxford thesarus
(1.0). For 3(c) the Turbo Paascal model was matched correctly (0.92), however the
Harrap’s model was not detected because only two prominent colour regions exist at
reduced resolution. If not occluded, as in this case, the single area ratio is consistent.
Finally the Oxford thesarus was again recognised correctly (1.0) with all other model
probabilities of 0.0 except the Oxford Spanish dictionary (0.71).

Figure 4.  The localised models for the test image set illustrated in Figure 3.

7    Conclusion

A spectral-spatial model for colour object recognition has been presented, which
describes rigid objects. It has been shown through experiments that this model is viable
and provides solutions to some of the common problems of the CRAGs, namely
computational expense due to sub-graph matching and the modelling of  non-adjacent
regions. Since the affine invariant moments used in the CLM are some what expense
computationally, alternative affine invariant descriptors will be examined, specifically
the contour descriptor in [2]. Also, a CRAG will be added to the CLM so that it will be



able to exploit the benefits of region adjacency and non-rigidity while maintaining the
features of the CLM.
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