
Detecting Bilateral Symmetryof 3D Point Sets from A�ne ViewsTor� Th�orhallsson�Department of Engineering Science, University of Oxford,Parks Road, Oxford, OX1 3PJ, U.K.torfi@robots.ox.ac.ukAbstractThis paper describes a novel method to detect 3D bilateral symme-try from a�ne structure as well as directly from a�ne views.Applying the notion of skewed symmetry to 3D a�ne structure, theproblem is reduced to detecting geometric degeneracies in sets of 3Dpoints. We present a method of detecting such degeneracies in a�nestructure in the presence of measurement errors. We further extendthis method to be applicable directly to point correspondences in twoor more a�ne views, without the need of explicit 3D reconstruction.We describe an algorithm, which applies the tests of degeneracyto symmetry detection in an e�cient manner. Results are included ofperformance under noise and application to real images.1 IntroductionMany man made and natural objects display symmetry to an extent which, ifrobustly detected, could provide cues for scene segmentation and object recognition[19]. Prior knowledge of 3D object symmetry has also been shown to aid in therecovery of 3D structure information from a single view [13, 20, 5]. Detecting3D symmetry from a single view is a very di�cult problem, however, because ofthe lack of constraints available. Consequently the bulk of the work published onbilateral symmetry detection falls roughly into two categories: (i) planar symmetryfrom a single view, and (ii) 3D symmetry from a complete metric 3D description.We acknowledge the problems involved in detecting 3D symmetry from a singleview of unconnected point features, and propose a method to detecting bilateralsymmetry from two or more a�ne views, with the aim of providing informationto aid scene segmentation and object recognition.Before describing the approach of this paper, we give a brief review of previouswork on symmetry detection. The various approaches mainly di�er in the assump-tions made about the viewing conditions, prior segmentation, and connectivity offeatures. Of the planar methods, those which detect bilaterally symmetric con�g-urations of 2D image points have only limited applicability to images of 3D scenes.See [6] for a comprehensive bibliography.Skewed symmetry was de�ned by Kanade [13] as the constraints imposed bybilateral symmetry of planar �gures on the geometry of an a�ne view of the �gure.�Thanks to David Murray for guidance and support to Paul Beardsley for kindly making hiscorner matcher software available and to the reviewers for their comments. The �nancial supportof the Helga J�onsd�ottir and Sigurlidi Kristj�ansson Memorial Fund is gratefully acknowledged.
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Image points related by skewed symmetry are connected by parallel line segments(or chords), the midpoints of which are collinear. The line de�ned by the midpointsis the image of the symmetry axis of the depicted object. Many di�erent methodsof detecting skewed symmetry have been proposed [8, 17, 11, 24, 3]. There are twomain approaches to reducing the combinatorial complexity of the problem: globaland local. Global methods use the entire �gure to �nd the axis of symmetry [8, 11]thereby assuming a segmented image. Local methods use a measure of similarityaround each image point to match symmetric point pairs. Most local methodsare concerned with the matching of connected contours, making use of contourderivatives for similarity measure [17, 24, 3].In a perspective view chords are no longer parallel, and their midpoints, as mea-sured in the image, do not correspond to the true midpoints on the object. Glachetet al. [9] propose a method to determines the pose of a bilaterally symmetric planarobject from the convex hull, again assuming a segmented scene.Methods reported for the detection of 3D object symmetry generally assumethe knowledge of true Euclidean structure, as opposed to the more easily obtaineda�ne or projective structure. Graph-based methods [12, 7] further assume a com-plete polyhedral description of the object, as provided by a wire-frame model.Imperfections due to either occlusion or noisy measurement are not considered.These requirements severely limit the applicability of these methods to visionproblems.This PaperIn this paper we consider the problem of detecting bilaterally symmetric pointfeatures on a three dimensional object, whose structure is known only up to ana�ne transformation. Such a�ne structure can be robustly recovered given eithertwo or more a�ne views [23, 15], two projective views under pure translation[16], or three projective views under planar motion [1]. We extend the notion ofskewed symmetry to 3D a�ne structure, thereby reducing the problem of symmetrydetection to that of detecting geometric degeneracies in sets of 3D points. Wedevelop a method to determine such degeneracies in the presence of non-isotropicuncertainties in point locations.The information contained in a 3D a�ne structure can be obtained from twoa�ne views of the scene [23]. This fact has been used to perform computationson a 3D structure in the image domain, without explicit 3D reconstruction [18].Proceeding in that spirit, we give an alternative method to determine the geometricdegeneracies directly from point correspondences in two or more a�ne views.We describe an e�cient algorithm to detect sets of four or more bilaterallysymmetric point pairs, contained within a larger point set. The algorithm isbased on successive degeneracy testing, and works with both a�ne structure andpoint correspondences in two or more a�ne views. We present the results ofa performance analysis under di�erent noise conditions, as well as an example ofapplying the algorithm on real views.The paper is organized as follows. We begin in x2 by describing the algorithmfor the detection of 3D skewed symmetry in terms of degenerate structure. Inx3 we give a robust method of detecting degenerate a�ne structure, which weextend in x4 to two or more a�ne views. Experimental results are given in x5,and conclusions in x6.



British Machine Vision Conference
M 3

M 2

M 1

M 2

M 1

M 4

M 3

V1X 1 X’1

X 2 2X’
V2(a) (b) (c)Figure 1: Testing a 3D a�ne structure for skew symmetry involves (a) testing eachpair of line segments connecting any two points for 3D parallelism, (b) (optionally)testing parallel line segments for 3D collinearity of midpoints, and (c) testing anyfour (or more) parallel segments for coplanarity of midpoints.2 Detecting 3D Skewed SymmetryBilaterally symmetric 3D objects have points arranged about a plane of symmetry.The chords connecting each pair of symmetric points are orthogonal to this plane.The midpoints of the points lie all in the plane of symmetry. In a single a�ne viewof such objects, the chords remain parallel, but the coplanarity of midpoints doesnot constrain their location in the image. With the single constraint of parallelchords, the problem of detecting 3D bilateral symmetry from a single a�ne viewis underconstrained.The a�ne structure of a 3D object retains both the parallelism of chords andthe coplanarity of the midpoints. The implications are that we have two constraintsto test for, instead of only one as in the case of a single a�ne view. Furthermorewe have a stronger constraint on parallelism, as the chords must be parallel in3D, rather than just in one view. The only constraint lost in the reconstructionup to an a�ne transformation is the perpendicularity of chords to the plane ofsymmetry. By analogy to the case of an a�ne view of a bilaterally symmetricplanar �gure [13], a structure satisfying these two constraints can be termed 3Dskewed symmetric.An Algorithm for the Detection of 3D Skewed SymmetryTo test a set of points in an a�ne structure for 3D skewed symmetry, we check forparallelism between the line segments connecting the points and for coplanarity ofthe midpoints. In order for the latter test to be conclusive it must be performedon a minimum of four segments, or eight points, from the set. Applying the testexhaustively would result in an algorithm with a complexity of O(n8), where n isthe total number of points in the set. However the test for parallelism requires onlya minimum of two segments, or four points, so applying it exhaustively requiresO(n4) operations. Using the fact that only parallel segments need to be tested forcoplanarity of midpoints, a more e�cient algorithm for detecting skewed symmetrycan be devised. We can achieve a further increase in e�ciency by noting, as didPonce [17] in the case of 2D skew symmetry, that a test of parallelism cannotsucceed if line segments have distinct spatial directions. We can generate the n22
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possible line segments connecting n points, and distribute them into k2 bins of atable, according to the spatial direction of each segment. The tests of parallelsimand coplanarity need only be performed within each bin, which on average containsapprox. n22k2 segments. In addition to the tests of parallelism and coplanarity,we test for very short line segments and for collinearity of midpoints in orderto suppress trivial matches. The spatial direction of very short line segmentscannot be accurately measured, giving rise to many false detections of parallelism.Similarly does a collinear point set form a planar structure with any additionalpoint.3 Testing for Degenerate StructureTo carry out reliable detection of 3D skewed symmetry, as described in the lastsection, we need to be able to detect coplanarity, collinearity, and parallelism of3D points in a reliable way. In this section we describe such tests based on thenotion of degenerate structure.Given a number of 3D points Xp = (Xp; Yp; Zp)T , p = 1; :::; P , we can formthe 3�P structure matrix S consisting of the column vectors Xp�X, where X isthe centre of mass of the point set. We then have the relation between the rank ofthis structure matrix and the geometric con�guration of the P points (or vectors)as given in the second column of Table 1. The rank of S can be obtained fromStructure Rank S Residualgeneral 3coplanar 2 �3collinear 1 �2 + �3coincident 0 �1 + �2 + �3Table 1: The relation between degenerate structure and the rank of the structurematrix in the absence of errors, as well as least squared distances from the closestdegenerate structure.the singular value decomposition of S, as the number of nonzero singular valuesequals the rank [10]. Equivalently we can count the non-zero eigenvalues of eitherof two symmetric matrices: the 3� 3 matrix SST or the P �P matrix STS, as thenonzero eigenvalues of either of these matrices equal the singular values of S.Contaminated A�ne StructureWhen the measurements of the structure are contaminated by noise, the best wecan do is to measure the deviation of the structure matrix from coplanarity orcollinearity.By the minimum property of principal axes [4] the least sum of squared dis-tances of the points Xp from a degenerate structure is given by the eigenvalues�1 � �2 � � � � of SST or ST S as shown in the third column of Table 1. If wecould assume an isotropic distribution of errors around each point Xp, we wouldbe able to decide directly from the size of these residual errors, whether the un-derlying structure was likely to be of a certain degenerate type. The assumptionof isotropic errors is hard to justify. A�ne structure is non-metric, which meanswe know nothing about the scale factors and shear angles relating it to the real
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structure. If the errors can be attributed to image measurements however, theire�ect on the structure matrix can be established.Under the assumption of Gaussian errors in the location of features in eachof the views used to calculate the a�ne structure, the resulting uncertainty inthe structure can be estimated in the form of the 3 � 3 covariance matrix �passociated with each 3D point Xp [15]. This covariance matrix depends on therelative orientation of object and camera in each of the views determining thestructure, and is generally not isotropic.We now assume that all points Xp are known to have the same1 zero meanGaussian error distribution with a symmetric positive de�nite covariance matrix�. It is then possible to apply the linear Mahalanobis-transformation [14] to eachpoint Zp def= �� 12Xp;where �� 12 is de�ned using the spectral decomposition ���T of � as�� 12 def= ��� 12 �T ; �� 12 def= diag(l� 12ii ):The e�ect of the Mahalanobis-transformation is that the error distribution of thetransformed points Zp has isotropic unit covariance. It should be noted that byapplying the Mahalanobis-transformation we not only transform the error distri-bution, but also the structure itself. However as a�ne structure is only de�ned upto an arbitrary linear transformation, no information is lost.When the Mahalanobis-transformation is applied to each point in the matrixS, we obtain the transformed structure matrix Sz def= �� 12 S: Detecting degeneracyin the transformed structure thus consists of �nding the eigenvalues of either ofthe two symmetric matrices:SzSTz = �� 12 SST�� 12 or STz Sz = ST��1S; (1)of respective dimension 3 � 3 and P � P , the latter form being computationallymore e�cient for small P . With the errors so normalised, the sum of squarederrors is �2-distributed and can thus be interpreted directly in terms of probabilityof a particular type of degeneracy occurring. Selecting a suitably low probability �with which a true hypothesis might still be rejected, the decision on the nature ofthe underlying structure is reached by means of the tests given in Table 2. UsingTest Decision�3 > �2P�3;� non-coplanar�2 + �3 > �2P�2;� non-collinear�1 + �2 + �3 > �2P�1;� non-coincidentTable 2: Tests with which to reject the hypothesis of a degenerate structure. Thenumber of points P in the structure determines the dof of the �2 distribution asshown.the tests in Table 2 we obtain the tests of parallelism of chords, collinearity andcoplanarity of midpoints needed to detect 3D skewed symmetry, by the algorithmdescribed in x2. The parallelism test is implemented by checking for collinearityof the vectors Vp def= Xp�X0p (p = 1; 2) de�ning the orientation of each chord (seeFig. 1(a)).1In the case of structure from a�ne views [23, 15] this condition is true when all the pointsare reconstructed from the same views.
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4 Detecting 3D Bilateral Symmetry from twoor more A�ne ViewsWe will now give a method to detect 3D bilateral symmetry directly from two (ormore) a�ne views, without explicit 3D reconstruction. To achieve that we onlyneed to give methods for the detection of degenerate structure from two or moreviews. The algorithm given in x2 then becomes applicable unchanged.Degenerate Structure in two or more ViewsGiven F � 2 a�ne views of a set of P scene points, whose correspondence betweenthe views is known, we denote the image of the scene point Xp in view f byxfp = (xfp; yfp)T . We form the form the 2F � P measurement matrixW def= 264 x11 � x1 : : : x1;P � x1... . . . ...xF;1 � xF : : : xF;P � xF 375 ;where xf denotes the centre of mass of the image points in view f . Tomasi andKanade [23] showed 2 that the measurement matrix W can be factored into twomatrices R and S, W = RS; (2)where R is a 2F � 3 matrix representing the camera orientation and S is the 3�Pstructure matrix from x3. Tomasi and Kanade showed by this that the matrix Wcan at most have rank 3. Using eqn. (2) as a model of the imaging process, it caneasily be shown3 that if one of the matrices on the right hand side, e.g. the matrixS, is rank de�cient the rank of W is reduced accordingly. More precisely:Extended Rank Theorem If F � 2 and the matrix R is of full rank, thenthe rank of the matrix W equals the rank of the matrix S.It should be noted that if the camera orientation matrix R is rank de�cient, Wand S are not necessarily of same rank. This happens when the motion betweenviews is a pure translation or a rotation about the optic axis [21].It follows from the extended rank theorem that the relation between the rankof S and the spatial con�guration of 3D points, as given in Table 1, also holdswhen S is replaced by the matrix W. Similarly it can be shown that the leastsquared distances of the image points xfp from degenerate structures is as givenin Table 1, whereby the eigenvalues are those of either of the symmetric matricesWWT or WTW.Using the fact that the image plane is metric, it may be quite reasonable tomake stronger assumptions about the distribution of image errors. If we assumeequal and uncorrelated errors in the in x and y coordinates of all views, theMahalanobis transformation matrix �� 12 takes the particularly simple form ofa scaled identity matrix. In that case we only need to �nd the eigenvalues, �1 ��2 � � � � ; of either of the two symmetric matrices WWT or WTW and determine2The measurement matrix, as de�ned here, is equal to the registered measurement matrixde�ned in [23] up to row ordering. This di�erence does not a�ect the cited results.3A proof is given in [22].
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(b)Figure 2: (a) The e�ect of di�erent choices of the rejection probability, �, from alarge range. Shown is the average size of the largest set of `chords' detected, when10 chords of bilateral symmetry are present (top) and absent (bottom). The imagenoise level is � = 1:0 pixels. (b) `Operating curves' summarising the performanceof the detector at di�erent noise levels, from bottom � = 0:5, 1:0, and 2:0 pixels.The curves are traced out by varying � as in (a). The horizontal axis shows theaverage number of chords missed, when ten chords are present. The vertical axisshows the average number of false chords in the largest detected set, when nochords are present. All sets contain 40 points.the underlying structure by means of the tests presented in Table 3, which nowincorporates the uniform standard deviation � of the image error distribution.Test Decision�3 > �2�2P�3;� non-coplanar�2 + �3 > �2�2P�2;� non-collinear�1 + �2 + �3 > �2�2P�1;� non-coincidentTable 3: Tests with which to reject a hypothesis of a degenerate structure directlyfrom two or more views. P is the number of feature correspondences.5 Experimental ResultsWe have implemented both versions of the algorithm described in x2, using a�nestructure (x3) or pairs of views directly (x4). The experiments presented here wereconducted using the two view version. For that version a 2D direction array wasused, indexed by the orientation of a line segment in each of the two views.5.1 Noise BehaviourIn order to evaluate the degradation of the proposed method of symmetry detectionwith image noise, we conducted experiments using a set of synthetically generatedviews, with noise added to the feature position.
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(a) (b) (c)Figure 3: The contents of the three most populated bins of the direction arrayshown superimposed on the left view of an image pair. In this example the arraycontains 210 line segments spread over 104 bins. The three bins shown contain (a)14, (b) 11, and (c) 9 segments.The experiment was conducted using synthetic pairs of views of point sets.Each set contained 40 points, half of which formed bilaterally symmetric chords.The shape of each point set as well as the parameters of the a�ne cameras werechosen randomly for each pair of views. The size of the object in each imagewas typically between 100 and 300 pixels in diameter. To the projected pointposition we added isotropic Gaussian noise of standard deviation � = 0:5, 1:0,and 2:0 pixels. For each noise level we ran the symmetry detector with severaldi�erent settings of the user selected rejection probability, � (Table 3). For eachsetting of these parameters we determined the average number of detected andmissing chords over 20 di�erent image pairs. We repeated the experiment usingnon-symmetric sets to determine the average number of `chords' in the largest falseplane of symmetry returned by the detector. The results are summarised in Fig.2. In this experiment the average number of subsets tested for compliance withskewed symmetry varied from around 1,400 to over 10,000 with � and �. Incomparison is the total number of di�erent sets of 10 or less correspondences onthe order of 1022.5.2 Example of Real ViewsIn this example we use two views of a model chair. Grey value corner features werematched automatically between views using the matcher of Beardsley et. al. [2].The 21 features generate 210 candidate chords, which were painted into a 30� 30direction array. The contents of the three most populated bins are shown in Fig.3. The tests for degenerate structure were initially conducted with image featurestandard error estimated at � = 1:0 pixels and a rejection probability � = 10�1.This value turned out to be too high for the test of parallelism, as the horizontallines on the front and back of the chair were not classi�ed as parallel. This maybe the e�ect of a slight perspective distortion in the images. Consequently therejection probability for the test of parallelism alone was lowered to � = 10�3.Running the algorithm with these parameter values resulted in only four of the104 bins originally occupied containing possibly symmetric point sets. Only one
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(a) (b)Figure 4: Results from the application of the tests of 3D parallelism of chords andcoplanarity of midpoints to the the segments in each bin in the direction array(Fig. 3). After applying the test, as described in the text, only �ve bins containedsets of candidate chords consistent with 3D skewed symmetry. Only one of thebins contains sets of more than four candidate chords. Shown here are the twolargest sets: (a) containing 6 'chords' and (b) containing 5 'chords'.of these bins contained sets with more than the minimum four line segments. Thisbin contained four sets of �ve candidate chords. Disabling the collinearity check,included to eliminate trivial although possibly correct sets of segments, increasedthe size of the largest set to six chords, with the addition of only a few sets of fourchords. The resulting sets are shown in Fig. 4. When the rejection probability ofthe coplanarity test was raised to � = 0:2 the smaller set (Fig. 4 (b)) was rejectedas non-coplanar, maintaining the set of six candidate chords (Fig. 4 (a)) as theonly set of more than four segments.The total number of sets examined by the algorithm to reach the set of sixchords amongst the 21 data points was 592 in this example. The total number ofdi�erent sets of four to six chords connecting any of the 21 data points is close to106. The running time was about 5 seconds on a Sun Sparc IPX.6 ConclusionsWe have presented a method of detecting 3D skewed symmetry of unconnectedpoint features a�ne structure or equivalently from two or more a�ne views. Themethod takes into account non-isotropic measurement noise, and is robust to out-liers, mismatches, and occlusions as long as at least four chords are visible andcorrectly matched. The combinatorial complexity is reduced by successive testingof degenerate structure. The complexity is considerable however, as no assump-tions are made of either prior segmentation or connectivity of features.In future work we will investigate the use of connected features and forms ofveri�cation for increased e�ciency, the possibilities of relaxing the requirement ofa�ne views, as well as the application to scene segmentation.References[1] M. Armstrong, A. Zisserman, and R. Hartley. Self-calibration from image triplets. InB. Buxton and R. Cipolla, editors, Proc. 4th European Conf. on Computer Vision, volume I,pages 3{16, Cambridge, 1996. Springer-Verlag.
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