
Self Calibration and 3D Reconstructionfrom Lines with a Single TranslatingCameraE. Thirion and C. RonseUniversite Louis PasteurDepartement d'Informatique7, rue Rene Descartes67000 Strasbourg - Francethirion@dpt-info.u-strasbg.frAbstractThis paper presents a simple method for the 3D reconstruction of ascene with a single translating camera and without calibration. Theself-calibration method is based on lines and requires three imagesof the scene. The reconstruction also includes error bounds on thereconstructed lines.1 IntroductionThe �rst 3D reconstruction techniques always involved a calibration stage, i.e.an o�-line evaluation of the camera parameters from a specially designed scene(a calibration grid for example). In fact these parameters can also be recoveredon-line, from the scene which has to be reconstructed. This is sometimes called\self-calibration".Several types of reconstruction are possible without calibration: euclidean,a�ne and projective. Euclidean (respectively projective, a�ne) reconstructionsdi�er from the true reconstruction by an arbitrary euclidean (respectively projec-tive, a�ne) transformation. Euclidean reconstructions preserve angles, propor-tions and shape. A�ne reconstructions do not preserve shape but they preserveparallelism. Projective reconstructions preserve none of these properties and arethe poorest type of reconstructions.The �rst investigations in self-calibration have been done in the case of pointcorrespondences. In [4] Faugeras and Maybank showed theorically that whenall the cameras have the same intrisic parameters, an euclidean reconstructionis possible with at least three images. For a projective reconstruction, only twoimages are necessary [3], [9]. The methods of T. Moons [11] and Koenderink [7]produce an a�ne reconstruction from two views in restricted cases: Koenderinkassumes weak perspective e�ects and Moons supposes a translating camera.The case of lines has been studied more recently. Up to our knowledge, thereis only the method of Hartley which gives a projective reconstruction from atleast three images [6], [5] and the method of Quan [8] (not yet published) which
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produces an a�ne reconstruction under unconstrained camera motion and weakperspective e�ects (a�ne camera model).2 De�nition of the problemOur goal is to get a 3D reconstruction made of 3D line segments with the followinghypotheses:1. We have a single translating camera taking several images of a scene.2. Each image is segmented into line segments approximating the edges.3. The correspondence between the segments in each image is given.4. Nothing is known about the camera.5. The translations are unknown.It can be shown that under translation, a�ne reconstruction is the reachesttype of reconstruction achievable. In order to have a self-calibration method whichis not perturbated by occultation or over-segmentation problems, we decided toignore line segment extremities. The determination of the camera parameters (thetwo translations in our case) is only based on the in�nite lines containing the linesegments. In this condition we need at least three images. We are now going toshow that our goal can be achieved with this minimum number of images.3 Camera modelisation and terminologyWe assume that the camera behaves like a pure perspective projection (pinholemodel). The projection is de�ned by two 3D points: F;O and two non parallel 3Dvectors ~I , ~J . We prefer this representation to the usual matrix representation be-cause it is more explicit and easier to \visualise mentally". The point F representsthe focal centre of the camera. The plane containing the point O and parallel to~I and ~J is the image plane. The triple (O; ~I; ~J) is the image coordinate system.Let P be a 3D point and let L be the line containing P and F . The image of a3D point P is de�ned as the couple of coordinates (x; y) in the image coordinatesystem of the point P 0, intersection of L with the image plane (�gure 1). Inversely,given any point (x; y) in the image, there is a unique line L going through F andP 0 = O + x~I + y ~J . This line is the interpretation line of (x; y). It is the set of all3D points which can have the image (x; y).The camera coordinate system is the coordinate system de�ned by (F; ~I; ~J; ~K),with K = O � F . Note that this coordinate system is not necessarily euclidean:the angles between the vectors ~I; ~J; ~K can take any value and their norms do nothave to be identical. It is an a�ne coordinate system.The coordinates of P 0 in the camera coordinate system are (x; y; 1). Thus, in(F; ~I; ~J; ~K) we have directly the parametric equation of the interpretation line ofa point (x; y). It is the set of 3D points �(x; y; 1), for any real number �. The 3Dpoint P 0, associated to an image point p, will be denoted by ~p.
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The interpretation plane of a 2D line l in the image is the set of all the 3Dpoints which have an image in l. Let us consider a line segment [a; b] in l. Theinterpretation plane of l contains the interpretation line of a and the interpretationline of b (�g. 2). Therefore it is the plane that contains F , ~a and ~b. Since F is theorigin of the camera coordinate system, the equation of the interpretation plane ofl in (F; ~I; ~J; ~K) is N:P = 0 with N = ~a ^ ~b. N is the normal of the interpretationplane of l.
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4.1 Self calibration constraintLet us consider a correspondence (s; s0; s00) where s (respectively s0,s00) is a segmentfrom the �rst (respectively second, third) image. We suppose here that the scenetranslates instead of the camera. Obviously this does not change anything to theproblem.Let S, S0, S00 be the three positions of the 3D line segment corresponding withs (see �gure 3). s; s0 and s00 are de�ned in the same image plane. Let L, L0, L00 bethe in�nite 3D lines containing respectively S, S0 and S00. Let l,l0, l00 be the in�nite2D lines containing respectively s; s0 and s00. The normals of the interpretationplanes of l, l0, l00 are denoted by N ,N 0,N 00. Remember (section 3) that we knowthe coordinates of these vectors in the camera coordinate system: they can bederived from the extremities of s; s0 and s00.For starting, we suppose that the images of L, L0 and L00 are exactly l,l0 and l00.Note that this allows partial occultation and over-segmentation. The extremities(s; s0; s00) do not have to be the projection of the extremities of (S; S0; S00).
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Figure 3: Self calibration constraint from three segments.Let us take any p point in s. This point is the image of a 3D point P in L.P is also in the interpretation line of p. Thus, in the camera coordinate system,P = �~p. After the �rst translation, P moves to P 0 = P +T1 = �~p+T1. P 0 belongsto L0. Consequently it is in the interpretation plane of l0. This condition can bewritten as : (�~p+ T1):N 0 = 0 (1)The third position of P is P 00 = P + T2 = �~p+ T2. This point belongs to L00.Therefore, it is in the interpretation plane of l00 and:(�~p+ T2):N 00 = 0 (2)From equation 1 we get: � = �T1:N 0~p:N 0 (3)By replacing � by this expression in equation 2, we get:
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�(T1:N 0)(~p:N 00) + (T2:N 00)(~p:N 0) = 0 (4)This is our self calibration constraint from one correspondence. It is a linearconstraint on the six dimensional vector U = (X1; Y1; Z1; X2; Y2; Z2) with T1 =(X1; Y1; Z1) and T2 = (X2; Y2; Z2). We need at least �ve of these constraints fordetermining U up to a scale factor (setting kUk = 1)4.2 Determination of the translationsWith inexact lines, we can solve the problem by least square. We consider nsegment correspondences (si; s0i; s00i ); i = 1; : : : ; n. pi is any point in the line licontaining si. N 0i (respectively N 00i ) is the normal of the interpretation plane ofthe line containing s0i (respectively s00i ). With n > 5, we have an overconstrainedlinear system AU = where A is a matrix of n lines and six columns. Each lineai of A is the six dimensional vector [�( ~pi:N 00i )N 0i ; ( ~pi:N 0i)N 00i ]. The \optimal"(statistically) solution is the unit vector U minimizing kAUk2. This is the eigenvector associated with the smallest eigen value of the 6�6 symmetric matrix ATA.We use the Jacobi method for solving this problem. Another possibility is to do asingular value decomposition of A and to keep the singular vector associated withthe smallest singular value.4.3 ReconstructionOnce the translations are determined, the reconstruction is very simple. We re-construct the end points of each line segment si = [ai; bi] of the �rst image. The3D points Ai, Bi associated with ai; bi are simply given by:Ai = �ai ~ai Bi = �bi ~biwith �ai = �T1:N 0i~ai:N 0i �bi = �T1:N 0i~bi:N 0i5 Bounding reconstruction errorsIt can be useful to know which lines are the most reliable and even better: tobound them by some kind of uncertainty domain.Such an error bounding technique has been integrated in our a�ne reconstruc-tion method. In this technique, 3D vectors are bound by convex domains like forexample plane sectors (�g.4-A) or solid angles (�g. 4-B).We suppose that we have a maximal error Emax on the position of the 2Dline segments. The de�nition of Emax is illustrated by �gure 4-A. [e1; e2] is a2D line segment included in a line l. We suppose that the \true" line l� passesbetween the two line segments [e�1 ; e�2 ] and [e+1 ; e+2 ] at distance Emax from l. Usingthis hypothesis we can compute, for each line l, a solid angle Sl that bounds thenormal of the interpretation plane of l�. We bound also the interpretation line of
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B CAFigure 4: A) Error bound on a line segment. B) Plane sector. C) Solid Anglee1 (resp. e2) or in other words, the vector ~e1 (resp. ~e2) by a plane sector P1 (resp.P2).The 3D points associated with e1 and e2 are given by:E1 = �1 ~e1 E2 = �2 ~e2 �1 = �T1:N 0~e1:N 0 �2 = �T1:N 0~e2:N 0We suppose also that T1 is bound by a solid angle S1. The problem is to�nd the lower and upper bounds of �1 and �2, knowing that T1 2 S1, ~e1 2 P1,~e2 2 P2 and N 0 2 S0l (solid angle bounding the normal of the interpretation planeof l0). This problem is solved with procedures computing the extremes values ofthe scalar product of two uncertain 3D vectors and a procedure computing thebounds of the quotient of two uncertain scalars. These procedures are describedin detail in [2] and [1].6 Results6.1 Real dataFigure 8 and 9 show two views of a reconstruction from three 256 � 380 images(�g 5, 6, 7). The object is a dodecahedron with �ve branch stars drawn on eachface. For this example, 61 line correspondences have been entered by hand.6.2 Statistical evaluation of robustness on simulated dataThe graphs presented here show the in
uence of various parameters on the ro-bustness of the program. For each parameter value, the program was executed Etimes. The ordinate represents the proportion P of program executions for whicha certain level of precision is reached. For simulating the scene N 3D line segmentsare randomly generated inside of a sphere. The scene is then translated twice in
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two random directions and the 3D segments are projected onto the image plane.All the 2D segments obtained in this way are then bound by a minimal rectanglerepresenting the image frame. Then noise is added to the 2D line segments bymoving slightly their extremities by � pixels (a pixel is the maximum dimensionof the image frame divided by 512). More details on the simulation process aregiven in [1].Figure 10 shows how much precision is required on the translation estimation inorder to get a reconstruction of \reasonable" quality. For each reconstructed pointPi , we measured the relative error on the depth coe�cient �i. To get the relativeerror, we divided the absolute error by the di�erence between the maximum andminimum value of all the �i's of the exact reconstruction. The ordinate representshere the proportion of points (over 6000) reconstructed with a relative error notexceeding a threshold. In this experiment N = 20,� = 0:5 and E = 150. Theabscissa is the error on the direction of the �rst translation T1. Note that evenwith a perfect translation, there is still 10 percent of points with a relative errorlarger than 10 percent. This is due to the presence of unstable lines.The in
uence of the noise on the translation estimation is shown in �gure 11(N = 20 and E = 220). P is the proportion of executions for which the erroron the �rst translation (in degrees) is lower than a threshold. Figure 12 showsthat the robustness of the translation estimation increases signi�cantly with thenumber of lines (� = 0:5, E = 100).We also compare the results with those of our previous method [10] whichwas restricted too parallel translations. The conclusion is quite interesting. Firstof all, if we apply the current method with parallel translations, the robustnessis slightly lower than the robustness of the previous method . This is shown in�gure 13 (N = 20, and E = 100). In this �gure P is the proportion of programexecutions for which the error on the translation was smaller than two degrees.This phenomenon can be explained by the fact that in the previous method, wehad only to estimate two parameters (direction of the translation) instead of �vefor the current method.But it is quite surprising to see that, in the case of non parallel translationsthe results are much better than before. This seems to indicate that translatingtwice the camera in the same direction leads to a degenerated situation which isnumerically unstable. We did another experiment to con�rm this. It is shown in�gure 14. In this experiment we measured the precision reached for various valuesof the angle between the two translations (with � = 0:5, N = 20, E = 400). P isthe percentage of program executions for which the error on T1 is smaller than athreshold. The graph shows clearly that the robustness increases when the anglebetween the two translations increases also and tends toward 90 degrees.
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Figure 5: Segments from �rst image.

Figure 6: Segments from second image.
Figure 7: Segments from third image.
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Figure 9: 3D reconstruction, secondview.



British Machine Vision Conference

0   0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6  1.8  2.0  2.2  2.4 2.6  2.8  3.0

40

50

60

70

80

90

100

< 10%

< 5%

Translation error (degrees)

30Figure 10: In
uence of translation er-rors on reconstructions.

0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6  1.8  2.0
Noise level (pixels)

10

20

30

40

50

60

70

80

90

100

P
< 2 degrees

< 0.5 degrees

Figure 11: Noise in
uence on transla-tion estimation.

10   20   30   40   50   60   70   80   90  100

10

20

30

40

50

60

70

80

90

100

< 2 degrees

< 0.5 degrees

Number of lines

P

Figure 12: In
uence of the number oflines.

0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6  1.8  2.0
Noise level (pixels)

10

20

30

40

50

60

70

80

90

100

P

Previous method

Current method

Figure 13: Noise in
uence with paralleltranslations.
P

Angle

5     10     15    20    25    30    35    40    45    50    55    60    65    70    75    80    85    90

10

20

30

40

50

60

70

80

90

100

< 2 Degrees

< 0.5 Degrees

Figure 14: In
uence of the angle be-tween the two translations.



British Machine Vision Conference
References[1] E.Thirion. A�ne reconstruction from lines. Technical ReportKUL/ESAT/MI2/9415, Katholieke Universiteit Leuven,Departement Elek-trotechniek, Kardinaal Mercierlaan 94, B-3001 Heverlee - Belgium, 1994.[2] E.Thirion. Bounding functions of uncertain scalars, 3d vectors andpoints. Technical Report KUL/ESAT/MI2/9505, Katholieke UniversiteitLeuven,Departement Elektrotechniek, Kardinaal Mercierlaan 94, B-3001 Hev-erlee - Belgium, 1995.[3] O.D. Faugeras. What can be seen in three dimensions with an uncalibratedstereo rig? In Proceeding of ECCV92, pages 563{578, 1992.[4] O.D. Faugeras, Q.T. Luong, and S.J Maybank. Camera self-calibration: The-ory and experiments. In Proceedings of the 2nd European Conference onComputer Vision, pages 321{334, Santa Margherita, Italy, 1992.[5] R. I. Hartley. Lines and points in three views - an uni�ed approach. In ARPAIU Worshop Proceedings, 1994.[6] R. I. Hartley. Projective reconstruction from line correspondences. In Pro-ceeding of IEEE Conf. on Computer Vision and Pattern Recognition, pages903{907, 1994.[7] J.J. Koenderink and A.J. van Doorn. A�ne structure from motion. Technicalreport, Utrecht University, Utrecht, The Netherlands, 1989.[8] L. Quan. A factorisation method for a�ne structure from line correspondence.In To appear in Proceedings of Computer Vision and Pattern Recognition,1995.[9] R.Mohr, L.Quan, F. Veillon, and B. Boufama. Relative 3d reconstruction us-ing multiple uncalibrated images. Technical Report RT 84-IMAG-12, LIFIA-IMAG, Grenoble, 1983.[10] E. Thirion, T. Moons, and L. Van Gool. A�ne reconstruction from lines.In Proceedings of the 6th British Machine Vision Conference-Vol. 1, pages267{276, Birmingham, 1995.[11] T.Moons, L. Van Gool, M. Van Dienst, and E.Pauwels. A�ne structure fromperspective image pairs under relative translations between object and cam-era. Technical Report 9306, KUL/ESAT/MI2, Katholieke Universiteit Leu-ven, Departement Elektrotechniek, Kardinaal Mercierlaan 94, B-3001 Hever-lee - Belgium, 1993.


