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Abstract

This paper presents a simple method for the 3D reconstruction of a
scene with a single translating camera and without calibration. The
self-calibration method is based on lines and requires three images
of the scene. The reconstruction also includes error bounds on the
reconstructed lines.

1 Introduction

The first 3D reconstruction techniques always involved a calibration stage, i.e.
an off-line evaluation of the camera parameters from a specially designed scene
(a calibration grid for example). In fact these parameters can also be recovered
on-line, from the scene which has to be reconstructed. This is sometimes called
“self-calibration”.

Several types of reconstruction are possible without calibration: euclidean,
affine and projective. Euclidean (respectively projective, affine) reconstructions
differ from the true reconstruction by an arbitrary euclidean (respectively projec-
tive, affine) transformation. Euclidean reconstructions preserve angles, propor-
tions and shape. Affine reconstructions do not preserve shape but they preserve
parallelism. Projective reconstructions preserve none of these properties and are
the poorest type of reconstructions.

The first investigations in self-calibration have been done in the case of point
correspondences. In [4] Faugeras and Maybank showed theorically that when
all the cameras have the same intrisic parameters, an euclidean reconstruction
is possible with at least three images. For a projective reconstruction, only two
images are necessary [3], [9]. The methods of T. Moons [11] and Koenderink [7]
produce an affine reconstruction from two views in restricted cases: Koenderink
assumes weak perspective effects and Moons supposes a translating camera.

The case of lines has been studied more recently. Up to our knowledge, there
is only the method of Hartley which gives a projective reconstruction from at
least three images [6], [5] and the method of Quan [8] (not yet published) which
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produces an affine reconstruction under unconstrained camera motion and weak
perspective effects (affine camera model).

2 Definition of the problem

Our goal is to get a 3D reconstruction made of 3D line segments with the following
hypotheses:

1. We have a single translating camera taking several images of a scene.
2. Each image is segmented into line segments approximating the edges.
3. The correspondence between the segments in each image is given.

4. Nothing is known about the camera.

5. The translations are unknown.

It can be shown that under translation, affine reconstruction is the reachest
type of reconstruction achievable. In order to have a self-calibration method which
is not perturbated by occultation or over-segmentation problems, we decided to
ignore line segment extremities. The determination of the camera parameters (the
two translations in our case) is only based on the infinite lines containing the line
segments. In this condition we need at least three images. We are now going to
show that our goal can be achieved with this minimum number of images.

3 Camera modelisation and terminology

We assume that the camera behaves like a pure perspective projection (pinhole
model). The projection is defined by two 3D points: F,O and two non parallel 3D
vectors f, J. We prefer this representation to the usual matrix representation be-
cause it is more explicit and easier to “visualise mentally”. The point F' represents
the focal centre of the camera. The plane containing the point O and parallel to
I and J is the image plane. The triple (O, f, f) is the 1mage coordinate system.

Let P be a 3D point and let L be the line containing P and F. The image of a
3D point P is defined as the couple of coordinates (z,y) in the image coordinate
system of the point P’, intersection of L with the image plane (figure 1). Inversely,
given any point (z,y) in the image, there is a unique line L going through F' and
P' = O + «l +yJ. This line is the interpretation line of (z,y). It is the set of all
3D points which can have the image (z,y).

The camera coordinate system is the coordinate system defined by (F, f, J_: Kt),
with K = O — F. Note that this coordinate system is not necessarily euclidean:
the angles between the vectors f, f, K can take any value and their norms do not
have to be identical. It is an affine coordinate system.

The coordinates of P’ in the camera coordinate system are (z,y,1). Thus, in
(F, f, f, K ) we have directly the parametric equation of the interpretation line of
a point (z,y). It is the set of 3D points A(z,y, 1), for any real number A\. The 3D
point P’, associated to an image point p, will be denoted by p.
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The interpretation plane of a 2D line [ in the image is the set of all the 3D
points which have an image in . Let us consider a line segment [a,b] in I. The
interpretation plane of [ contains the interpretation line of a and the interpretation
line of b (fig. 2). Therefore it is the plane that contains F, @ and b. Since F is the
origin of the camera coordinate system, the equation of the interpretation plane of
[ in (F, f, f, I?) is N.P =0 with N =a@Ab. N is the normal of the interpretation
plane of [.

Figure 1: Camera model

Interpretation line of b

Figure 2: Interpretation plane of a line

4 Method

In this section, we give a method for determining the two translations T} (from
first to second position), T (from first to third position) and the 3D coordinate
of the line segments in the camera coordinate system (up to a scale factor).
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4.1 Self calibration constraint

Let us consider a correspondence (s, s', s") where s (respectively s’,s") is a segment
from the first (respectively second, third) image. We suppose here that the scene
translates instead of the camera. Obviously this does not change anything to the
problem.

Let S, S’, S” be the three positions of the 3D line segment corresponding with
s (see figure 3). s, s’ and s” are defined in the same image plane. Let L, L', L" be
the infinite 3D lines containing respectively S, S’ and S”. Let [,I’, I” be the infinite
2D lines containing respectively s, s’ and s”. The normals of the interpretation
planes of [, I’, I" are denoted by N,N',N". Remember (section 3) that we know
the coordinates of these vectors in the camera coordinate system: they can be
derived from the extremities of s,s’ and s".

For starting, we suppose that the images of L, L' and L" are exactly [,I’ and I".
Note that this allows partial occultation and over-segmentation. The extremities
(s,s',s") do not have to be the projection of the extremities of (S,S’, S").

1
|
|
|
|

Figure 3: Self calibration constraint from three segments.

Let us take any p point in s. This point is the image of a 3D point P in L.
P is also in the interpretation line of p. Thus, in the camera coordinate system,
P = \p. After the first translation, P moves to P’ = P+T; = Ap+T;. P’ belongs
to L'. Consequently it is in the interpretation plane of I’. This condition can be
written as :
(M +Ty).N' =0 (1)
The third position of P is P" = P + Ty = Ap + T». This point belongs to L".
Therefore, it is in the interpretation plane of I" and:

(Ap+Ts).N"=0 (2)
From equation 1 we get:

~T..N'
B
p.N'

By replacing A by this expression in equation 2, we get:
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—(Ty.N")(p.N") + (T..N")(p.N") = 0 (4)

This is our self calibration constraint from one correspondence. It is a linear
constraint on the six dimensional vector U = (X1,Y1, 21, X, Y, Z5) with T; =
(X1,Y1,7;1) and Ty = (X2,Y5,Z2). We need at least five of these constraints for
determining U up to a scale factor (setting [|U]| = 1)

4.2 Determination of the translations

With inexact lines, we can solve the problem by least square. We consider n
segment correspondences (s;, s}, s!),i = 1,...,n. p; is any point in the line [;
containing s;. N/ (respectively N}') is the normal of the interpretation plane of
the line containing s} (respectively s{). With n > 5, we have an overconstrained
linear system AU = where A is a matrix of n lines and six columns. Each line
a; of A is the six dimensional vector [—(p;.N}')N/, (p;-N/)N]']. The “optimal”
(statistically) solution is the unit vector U minimizing ||AU||?>. This is the eigen
vector associated with the smallest eigen value of the 6 x 6 symmetric matrix A7 A.
We use the Jacobi method for solving this problem. Another possibility is to do a
singular value decomposition of A and to keep the singular vector associated with
the smallest singular value.

4.3 Reconstruction

Once the translations are determined, the reconstruction is very simple. We re-
construct the end points of each line segment s; = [a;, b;] of the first image. The
3D points A;, B; associated with a;, b; are simply given by:

A;=Xda;  Bi= X\,

with , ,
\o — —T,.N| b= —T,.N|

(2 ~ ! i N

5 Bounding reconstruction errors

It can be useful to know which lines are the most reliable and even better: to
bound them by some kind of uncertainty domain.

Such an error bounding technique has been integrated in our affine reconstruc-
tion method. In this technique, 3D vectors are bound by convex domains like for
example plane sectors (fig.4-A) or solid angles (fig. 4-B).

We suppose that we have a maximal error E,, on the position of the 2D
line segments. The definition of E,.,. is illustrated by figure 4-A. [e1,es] is a
2D line segment included in a line I. We suppose that the “true” line [* passes
between the two line segments [e; , e, | and [e], el ] at distance Eyng from [. Using
this hypothesis we can compute, for each line [/, a solid angle S; that bounds the
normal of the interpretation plane of [*. We bound also the interpretation line of



British Machine Vision Conference

® ©

Figure 4: A) Error bound on a line segment. B) Plane sector. C) Solid Angle

e1 (resp. ez) or in other words, the vector €; (resp. €3) by a plane sector P; (resp.
P,).
The 3D points associated with e; and e, are given by:
_ —T1.N'

~T,.N'
E, = \é Ey = e AL = Ao =
1 1€1 2 2€2 1 N 2 &N

We suppose also that 77 is bound by a solid angle S;. The problem is to
find the lower and upper bounds of A; and A, knowing that 77 € Sy, €1 € P,
€2 € P, and N' € S] (solid angle bounding the normal of the interpretation plane
of I’). This problem is solved with procedures computing the extremes values of
the scalar product of two uncertain 3D vectors and a procedure computing the
bounds of the quotient of two uncertain scalars. These procedures are described
in detail in [2] and [1].

6 Results

6.1 Real data

Figure 8 and 9 show two views of a reconstruction from three 256 x 380 images
(fig 5, 6, 7). The object is a dodecahedron with five branch stars drawn on each
face. For this example, 61 line correspondences have been entered by hand.

6.2 Statistical evaluation of robustness on simulated data

The graphs presented here show the influence of various parameters on the ro-
bustness of the program. For each parameter value, the program was executed E
times. The ordinate represents the proportion P of program executions for which
a certain level of precision is reached. For simulating the scene N 3D line segments
are randomly generated inside of a sphere. The scene is then translated twice in
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two random directions and the 3D segments are projected onto the image plane.
All the 2D segments obtained in this way are then bound by a minimal rectangle
representing the image frame. Then noise is added to the 2D line segments by
moving slightly their extremities by e pixels (a pixel is the maximum dimension
of the image frame divided by 512). More details on the simulation process are
given in [1].

Figure 10 shows how much precision is required on the translation estimation in
order to get a reconstruction of “reasonable” quality. For each reconstructed point
P; , we measured the relative error on the depth coefficient ;. To get the relative
error, we divided the absolute error by the difference between the maximum and
minimum value of all the \;’s of the exact reconstruction. The ordinate represents
here the proportion of points (over 6000) reconstructed with a relative error not
exceeding a threshold. In this experiment N = 20,e = 0.5 and E = 150. The
abscissa is the error on the direction of the first translation 77. Note that even
with a perfect translation, there is still 10 percent of points with a relative error
larger than 10 percent. This is due to the presence of unstable lines.

The influence of the noise on the translation estimation is shown in figure 11
(N =20 and E = 220). P is the proportion of executions for which the error
on the first translation (in degrees) is lower than a threshold. Figure 12 shows
that the robustness of the translation estimation increases significantly with the
number of lines (e = 0.5, E = 100).

We also compare the results with those of our previous method [10] which
was restricted too parallel translations. The conclusion is quite interesting. First
of all, if we apply the current method with parallel translations, the robustness
is slightly lower than the robustness of the previous method . This is shown in
figure 13 (N = 20, and E = 100). In this figure P is the proportion of program
executions for which the error on the translation was smaller than two degrees.
This phenomenon can be explained by the fact that in the previous method, we
had only to estimate two parameters (direction of the translation) instead of five
for the current method.

But it is quite surprising to see that, in the case of non parallel translations
the results are much better than before. This seems to indicate that translating
twice the camera in the same direction leads to a degenerated situation which is
numerically unstable. We did another experiment to confirm this. It is shown in
figure 14. In this experiment we measured the precision reached for various values
of the angle between the two translations (with e = 0.5, N = 20, E = 400). P is
the percentage of program executions for which the error on Tj is smaller than a
threshold. The graph shows clearly that the robustness increases when the angle
between the two translations increases also and tends toward 90 degrees.
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Figure 5: Segments from first image. —
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Figure 8: 3D reconstruction, first view.
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Figure 9: 8D reconstruction, second
view.
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