
B-Fitting: An Estimation TechniqueWith Automatic Parameter Selection. �N.A.Thacker, D.Prendergast, and P.I.Rockett.Dept. of Electronic and Electrical EngineeringUniversity of She�eldemail: n.thacker@sheffield.ac.ukAbstractThe problem of model selection is endemic in the machine visionliterature, yet largely unsolved in the statistical �eld. Our recent workon a theoretical statistical evaluation of the Bhattacharyya similaritymetric has led us to conclude that this measure can be used to provide asolution. Here we describe how the approach may be extended to solvethe problem of model selection during the functional �tting process.This paper outlines the motivation for this work and a preliminarystudy of the use of the technique for function �tting. It is shown howthe application of the method to polynomial interpolation providessome interesting insights into the behaviour of these statistical methodsand suggestions are given for possible uses of this technique in vision.1 System Identi�cationIn some areas of machine vision the correct model required to describe a systemcan be derived without any real ambiguity. These situations are exempli�ed bythe process of camera calibration where a good understanding of the physical pro-cesses involved allow us to de�ne models which encompass the main optical andelectronic e�ects. In other cases, however, selecting the correct model to describea set of data is something that cannot be speci�ed uniquely a-priori. Compli-cated models result in reduced ability to make predictions, but simple models maynot adequately describe the data. This is the problem of model selection andunfortunately it is endemic in much machine vision research eg: object recogni-tion, tracking, segmentation, 3D modelling and in fact most scene interpretationschemes! Needless to say, if the wrong function is selected to describe a particulardata set then the associated machine vision algorithm will fail and provide datawhich is of little or no use for subsequent processes. The problem of automaticmodel selection should be regarded as an important research topic in machinevision.The method of least-squares �tting will give us an estimate of the optimal set ofparameters to describe a given data set with a particular model but unfortunatelythe Chi-squared measure is not directly suitable for model selection. The standard�The work presented here is part funded by the EPSRC grant GR/K55288
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method for optimal model selection is that suggested by Akaike. He showed thatthe Chi-squared test statistic is biased towards small values, due to the freedomthat a model has to match the variation in the noise. An analysis for large datasamples [1] shows that the bias could be estimated and compensated for using thetest statistic: �2C = �2 + m=NWhere N is the quantity of data and m is the number of degrees of freedom for theparametric model. Under some limited circumstances this measure is su�cient toenable model selection but the method does have its limitations which are directlyrelated to the de�nitions of the N and m terms and can best be understood byexample. A 3x3 rotation matrix has 9 free parameters but only 3 degrees offreedom, which should we take as our value of m? The problems are not limitedto the model. A well distributed data set can strongly constrain a set of modelparameters but a tightly grouped set of data may not. Again the bias is datadependent in a way that is not taken into account.Such problems lead to the conclusion that the number of model parameters isnot necessarily the number we are currently using to de�ne the model but needsto estimated in a di�erent way, such as the number of linearly independent modelparameters (which will be the same regardless of the speci�c choice of functionalrepresentation). However, if this is the case (and it is generally accepted that itis) we now have a problem because the de�nition of linear independence is datadependent so we would need a di�erent value of m for di�erent data sets as wellas for di�erent model parameters.Both of the above problems have arisen because the bias correction term isderived for a limiting case and does not take account of data dependent variations,particularly for small data sets. These problems will also occur in any techniquewhere it is assumed that the e�ects of function complexity are something thatcan be computed a-priori and are data independent, such as [3]. Having saidthis, the Akaike measure can be successfully used for automatic model selectionwhen "calibrated" on simulated data typical of the problem at hand by adjustingthe process of estimation of N and m to give reasonable results. Over the yearsthis approach has led to the generation of several "model selection" criteria forvarious applications. In this paper we try to get to grips with the problem moredirectly and suggest a new statistical technique which, although consistent withthe standard methods, requires no problem dependent adjustment.2 Suitability of the Bhattacharyya Measure.The Bhattacharyya measure was originally de�ned on the basis of a geometric ar-gument for the comparison of two probability distribution functions P (ajx); P (bjx)[2] 1. Z dxpP (ajx)pP (bjx)1the de�nition given here excludes the prior probability P(x) as it is unnecessary for ourpurposes.



British Machine Vision Conference
Later it was found to provide an upper bound on the Bayes classi�cation error ratefor a two class problem. In the meantime it (and the analogous Matusita measure)has been used as an empirical favourite for probability comparison in the �eld ofstatistical pattern recognition [5]. We have now shown that the Bhattacharyyameasure is the correct (Maximum Likelihood) similarity metric for probabilitydistributions. The measure can be shown to be both self consistent and unbi-ased [11]. In addition the Bhattacharyya (or Matusita) measure can be consideredas a chi-squared test statistic with �xed bias. Thus in relation to the work ofAkaike the measure requires no bias correction.The relevance of the Bhattacharyya measure to system identi�cation is dueto the fact that both measurement and model prediction stability can be repre-sented as a Pdf in the measurement domain. Optimal generalisation ability willbe obtained when the prediction probability distribution most closely matches theobserved data distributions (an analytic approximation to cross-validation).3 Function FittingIn order to construct the measure from measured data for model selection weexecute the following steps;� compute the covariance of the function parameters.� estimate the constraint provided by the function on the training data byerror propagation.� construct a probability distribution for the prediction of the output from thefunction.� compare with the initial data set using the Bhattacharyya measure.We have independently suggested the measure as the correct way to selectmodels for a Kalman �lter tracking system, and showed improved results over otherapproaches [6]. However, the bene�ts of the measure do not have to stop here. Ifwe believe that the measure is a suitable indicator of prediction ability we wouldalso be justi�ed in constructing an optimisation procedure based on this measure.The reason for attempting this is as follows. If the Bhattacharyya measure isan unbiased estimate of prediction ability it should be possible to simultaneouslyminimise the output mapping accuracy and minimise the required internal degreesof freedom. All without the need for ad-hoc weighting of the signi�cance of eachof these to the combined cost function. We will call this process Bhattacharyya(or B) �tting. In the process we would hope to get improved �tting stability andprediction accuracy.At this stage it would be right to ask the question; What extra information isbeing used in comparison to standard techniques that makes all of this possible?After all, the "bias/variance" dilemma (as it is referred to in the Neural Networkliterature [4]) is real so we must be providing new information if we are to solveit. The answer lies in the estimate of the errors on the output data. With normalleast-squares no assumption is made about the absolute error on the output data.
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All error scales will give the same least squares solution. With the Bhattacharyyameasure the output is sensitive not only to the mean of the output distributionbut also its variance. The more accurate the data the more accurately the functionwill be required to map it (�gure a).Interestingly, the requirement that the function `concisely' �ts the data emergesas a data driven Maximum Likelihood mechanism and does not require any as-sumption regarding prior probabilities of function suitability, unlike the Bayesiantechniques described in [3].
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4 Properties of the Bhattacharyya OverlapIf we visualise the data as a hyper-sphere PDF in measurement space then thespace of all allowable function parameter values de�nes a manifold though thisspace and the least squares solution is the point of closest approach of this manifoldto the centre of the data PDF (Figure b), and the line from the centre of the dataPDF to the manifold must be perpendicular to the manifold. The result of any�tting process must produce allowable parameter variations which are constrainedto vary along the manifold. It will be seen below that the full covariance usedfor data prediction is a convolution of the data PDF with the function constraintPDF. This must be a hyper-ellipse with principle axes oriented along the functionconstraint manifold. For a �xed complexity function the optimal overlap with thedata PDF must again be when the centre of the hyper-ellipse and the hyper-sphereare at their closest, ie at the same minimum as with least-squares. However, thesolution can be expected to be di�erent once we allow the functional complexity tovary. Thus the B �tting can be considered as an extension to least squares �ttingand it is valid to use the standard techniques for estimating parameter covariance.In order to try out the basic statistical ideas behind calculation of the Bhat-tacharyya measure and B �tting we have �rst con�ned ourselves to the relativelysimple problem of polynomial function �tting with a �xed number of parameters.This will be done to establish that the �tting metric has a minimum at the ex-pected number of parameters before allowing the number of free parameters to bemodi�ed to automatically locate this minimum.
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5 Fixed Order Polynomial Fitting.Assuming a locally quadratic least-squares minimum (which is always true at asu�ciently small error scale) the inverse covariance matrix for a set of parametersa of a function f(xi; a) can be estimated from a set of data yi fromtC�1a = NXi 1�2i ( @fi@an )
 ( @fi@am ) = NXi 6=j 1�2i JTi 
 Jiwhere �2i is an estimate of the data measurement accuracy var(Yi) and Jiis the Jacobian. For the particular case of polynomials, the second derivativescomputed this way can be shown to be independent of the data measurements Yiand only dependent on the ordinal location of the data xi. This means that theexpected parameter accuracy can be estimated once the measurement ordinates arespeci�ed. Similarly, therefore the parameter covariance is completely independentof the estimated parameter values. This represents a considerable simpli�cation incomparison to more complicated models such as those used for camera calibrationor neural networks, where the covariance on the data would be expected to beparameter and measurement dependent, (As parameter correlations can removedegrees of freedom from the `e�ective' network function.).To calculate the overlap measure we �rst need an estimate of the functionsability to estimate the data. In order to generate an unbiased estimate of theBhattacharyya measure the estimated covariance on the parameters must be con-structed in a manner that excludes the data value used in the Bhattacharyyaoverlap. This can be achieved if the B �tting process is visualised as a `leave oneout' chi-squared �tting process of m �ts, each excluding one data point. Such a�tting process, when optimally combined, would still give the same result as achi-squared �t on the entire data set (exactly as predicted above) but gives ussome insight on how to compute the unbiased covariance.We can de�ne the inverse covariance for the excluded data point j asjC�1a = NXi 6=j 1�2i JTi 
 JiThe covariance of the optimally combined set of �ts would then be given by theaverage of the parameter covariance estimated fromCa = 1=N NXi jCaThis estimation process can be considered as an extension to the normal tech-nique for unbiased variance estimation on n data points when weighting with afactor of 1=(n� 1). It would be wrong to compute the full covariance matrix fromthese �ts from the summed inverse covariance, in the normal fashion for optimalcombination, as in this case the data sets are almost perfectly correlated. Theadequacy of this multiple �t interpretation of B-�tting can be validated by com-paring the data prediction capability with that predicted by Ca. This particularly
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cumbersome calculation can be rationalised by making use of the matrix inversionlemma (Appendix A). The errors on the predicted data points will be correlatedand the constraint on the data given the model must be propagated fully back tothe measurement domain. Cy = rafCarafTwhere raf is the matrix of function derivatives for the entire data set. Computa-tion of the ability of the �tted function to predict the data is now given byCf = Cy + �2where �2 is the diagonal matrix of independent measurement errors. The overlapbetween this probability distribution and the data distribution can not be com-puted directly and the data needs to be rotated into a space where the principleaxes are orthogonal to the ordinates. This is achieved using Singular Value De-composition [9]. The full Bhattacharyya measure is then estimated along the axesde�ned by the eigen vectors of this matrix by multiplying each independent con-tribution from the 1 D form of the Gaussian overlap (Appendix B). As explainedabove, when �tting with this technique with a �xed number of parameters, wewould expect to �nd the same function minima as located by least squares.6 Predicting Model Order.The Bhattacharyya calculation described above was tested on a simple polynomialexpression y = 2 � x + x2 � x3for ten data points generated in the range -1 to 1. Data generated from this modelwith a uniform random error of 0.08 (Figure c) was �tted using least squaresand the prediction accuracy of the model for unseen data was compared withthe estimated value of log(Btot) as a function of the number of �t parameters.The data shown in Figure d below demonstrates the observed behaviours for theaverage of the resulting test statistic from 100 �ts ("B-stat") in comparison to thechi-squared ("C-stat").
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The Bhattacharyya measure predicts correctly the model order of the data andcorrelates directly with the prediction ability estimate of the obtained �t. Theleast-squares �t measure continues to reduce with increasing numbers of modelparameters as expected while its ability to predict unseen data worsens with de-creasing model stability (Figure e "C"). This result is entirely consistent with theresults obtained for model selection in [6]. Identical �tting results are obtainedwith both the Bhattacharyya and Chi-squared measures at this stage.7 Gating Function Parameters.The results from the previous sections con�rm that the Bhattacharyya metric isa reasonable statistic for estimating the correct model order as a statistic directlyrelated to generalisation ability. So far we have described the behaviour of the B�tting process on a model of �xed complexity, but the whole motivation for usingthis measure is to allow function complexity to be modi�ed during the �ttingprocess. This requires a mechanism to eliminate unwanted degrees of freedom inthe �tted function.As SVD is a standard technique for matrix inversion which identi�es linearlyindependent degrees of freedom we can use a modi�ed SVD algorithm to identifyunwanted parameters. The standard techniques for matrix inversion eliminate thein�nite contributions to the parameter covariance during it's calculation from theinverse according to the `condition' of each eigen value almost exactly as required.The only change needed is that variances must be eliminated when correlationsare considered su�ciently strong to remove a particular linear combination of pa-rameters from the model rather than due to numerical stability ie: when a linearlyindependent parameter is consistent with zero. We call this process function gat-ing and this procedure is entirely in keeping with our discussion on the e�ectivenumber of linearly independent parameters given above. It is done by modifyingthe estimate of the inverse singular values si from the eigen values ei (returnedfrom SVD) as follows: si = 1=ei if eia02i > csi = eia04i =c2 elseWhere c is our con�dence limit and a0i is a linearly independent parameter obtainedby rotating the initial parameter set using the i th eigen vector vi.a0i = a:viThe covariance for the initial parameter set is then computed in the usual mannerfrom the outer products of the eigen vectors.Ca = Xi sivi 
 viThis combined process can be thought of as a probabilistic weighting of contribu-tions to the matrix inverse from the signi�cant linearly independent parametersin the model �t.
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We repeated the multiple �t tests performed in the previous sections but nowwith gated parameters. As expected for the B �tting process, the unnecessaryparameters were eliminated and their contribution to the parameter covariancewas reduced to zero. More importantly the generalisation ability of the �ttedmodel achieved optimal, least-squares �t, performance for the correct model order,regardless of the number of parameters in the �tted model (Figure e "B-SVD"),eliminating entirely the problem of over-�tting.
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(g) 4th order B �tFinally we turn our attention to parameter correlation. We wish to establishthat the B �tting technique is independent of the particular choice of equivalentfunction parameterisation. To do this the parameters must be allowed to correlatein a manner dependent on the parameter values.The e�ects of parameter correlation are best described by giving examples. Inthe case of a simple polynomial function, as we have already said, the covarianceof the parameters is a constant, �xed once the ordinates of the measurements arespeci�ed. It is independent of both the actual data measurements Yi and thereforealso the parameters describing the data. However, if we construct a function ofthe form y = (a0(1 + a1x(1 + a2x(1 + a3x(:::))))we see that if at any point an an becomes zero all following terms e�ectively getswitched o� thus giving a limited form of gating and improved generalisation char-acteristics. The simplest function which identi�es individual terms for elimination



British Machine Vision Conference
is y = a0ja0j+ a1ja1jx+ a2ja2jx2 + a3ja3jx3 + :::Under normal circumstances these functions would behave inconsistently both interms of performance of the �tted function and estimation of the least-squares andAkaike measures. When B �tting however, both functional forms give equivalentand optimal (least squares generalisation for the true number of parameters) per-formance regardless of the number of �t parameters once the data complexity ismatched (Figure e "B-gat1","B-gat2").8 Conclusions.In this work the Bhattacharyya statistic, a maximum likelihood estimator, hasbeen described and compared to standard techniques for model selection. Amethod has been described for computing this measure from expected data vari-ance estimates for the purposes of function �tting. The method appears to beable to correctly identify the model of appropriate order with which to describethe data. Fitting results in a model with a generalisation ability that is consistentwith an optimally selected least squares solution. We have introduced the conceptof `gating' and showed how parameters can be eliminated from the Bhattacharyyaevaluation function during the minimisation process. This process results in opti-mal least-squares performance for the �tting process regardless of the number of�t parameters.B �tting can be regarded as n simultaneous least-squares �ts on n data points,where each �t excludes one of the data. The net e�ect produces a parametercovariance which can be estimated as the average from all �ts. This interpretationis also in agreement with a minimum which is co-incident with the standard LSFon the full data set. Thus B �tting can be regarded as an analytic approximationto the jack-knife cross validation procedure. However, in this case we can now�t with all of the data and the resulting �t value gives a direct estimation ofgeneralisation capabilities of an individual solution rather than a set of solutions.The ability to compute a statistic which directly estimates a model's capabili-ties for data prediction gives us a valuable tool for modelling and interpretation.B-�tting will eliminate the ad-hoc selection of an appropriate �tting model (orequivalently function priors), replacing this instead with a functional mapping withthe minimum number of linearly independent parameters required to accuratelyaccount for the data from the class of functions selected. This is an importantresult even if the `true' underlying model of the data is not representable. We arecurrently applying the technique developed here for stereo mapping of image databetween known edge correspondences, this application is described in a companionpaper at this conference [7]. The value of this technique is shown in �gures f andg where the technique has been used to constrain the mapping solution to the onewhich describes the data with the minimum functional complexity 2.The statistic is also being used to develop a neural network training algorithmwhich will literally optimise the network generalisation ability. Such an approachis not supported by standard statistical measures due to limitations such as those2Thanks are due to Tony Lacey for helping us to generate these �gures
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described in this paper. This work is to be evaluated on the analysis of SPOTimages for land use management. The measure is very similar to one suggestedpreviously in this area of network selection [13]. Previously the same statisticalmeasure has been used in the development of object recognition and neural net-work auto generation algorithms [10, 12]. The measure and the �tting techniquedescribed here would also clearly have use in the problem of image segmentationand geometric approaches to model based vision as an alternative to approachessuch as those described in [3]. In fact the formulation of this technique for el-lipse �tting is found to have many similarities to the empirically motivated "biascorrected Kalman Filter" [8].Appendix A. Recursive estimation of CovarianceFor the particular case of estimating jCa fromjC�1a = tC�1a � JTi 
 JTi =�2iwe can use the matrix inversion lemma to get the equivalent form for the inverse, whereK is often called the Kalman Gain;jCa = (I � K 
 Jj)tCa K = tCaJTj (JtjCaJTj � �2i )�1Appendix B. Analytical 1D BhattacharyyaWith Gaussian distributions the Bhattacharyya integral becomesBl = �ln 1p2��a�b Z 11 exp� 14((x� �a)2=�2a + (x� �b)2=�2b )dx= �lnexp (�a��b)24(�2a+�2b)p2��a�b Z 11 exp� �2a + �2b4�2a�2b �x� �2b�a + �2a�b�2a + �2b �2! dx= �ln( p2�a�bp�2a + �2b ) + (�a � �b)24(�2b + �2a)References[1] H.Akaike, `A new Look at Statistical Model Identification', IEEE Trans. on Automatic Control, 19, 716,(1974).[2] A.Bhattacharyya. `On a Measure of Divergence Between Two Statistical Populations De�ned by theirProbability Distributions',Bull, Calcutta Math Soc., 35, 99 (1943).[3] T.Darrell and A.Pentland. Coorperative Robust Estimation Using Layers of Support. IEEE Trans,PAMI, 17,5,1995.[4] S.Geman, E.BienenStock and R.Doursat, `Neural Networks and the Bias/Variance Dilemma', NeuralComputation 4(1),1 (1992).[5] K.Fukenaga, `Introduction to Statistical Pattern Recognition', 2ed, Academic Press, San Diego(1990).[6] A.J.Lacey, N.A.Thacker and N.L.Seed, `Feature Tracking and Motion Classi�cation Using a Switch-able Model Kalman Filter.' Proc. BMVC, York, Sept. 1994.[7] A.J.Lacey, N.A.Thacker and R.B.Yates, 'Surface Approximation from Industrial SEM Images.', sub-mitted to BMVC, 1996.[8] J.Porrill, `Fitting Ellipses and Predicting Con�dence Envelopes using a Bias Corrected Kalman Fil-ter.' Proc. 5th. Alvey Vision Conference, 175-185, Sept. 1989.[9] W.H.Press B.P.Flannery S.A.Teukolsky W.T.Vetterling, Numerical Recipes in C, Cambridge Uni-versity Press 1988.[10] N.A.Thacker and J.E.W.Mayhew, `Designing a Network for Context Sensitive Pattern Classi�cation.'Neural Networks 3,3, 291-299, 1990.[11] N.A.Thacker, F.J.Aherne and P.I.Rockett, `The Bhattacharyya Metric as an Absolute SimilarityMeasure for Frequency Coded Data', Submitted to Pattern Recognition (1994).[12] N.A.Thacker, P.A.Riocreux, and R.B.Yates, `Assessing the Completeness Properties of Pairwise Ge-ometric Histograms", Image and Vision Computing, 13, 5, 423-429, 1995.[13] D.J.C.MacKay, `Bayesian Modelling and Neural Networks', Research Fellow Dissertation, TrinityCollege, Cambridge (1991).


