SPATIAL-TEMPORAL REASONING
BASED ON OBJECT MOTION

M. K. Teal & T.J. Ellis*.
Bournemouth University, Department of Electronics,
mteale@bournemouth.ac.uk.
*City University, Information Engineering Centre,
t.j.ellis@city.ac.uk.

Abstract

This paperdescribeshe continuing developmeniof a systemfor tracking
multiple man madeobjects, (typically vehicles)moving in a natural open
world scene,where the detectedmotion is usedto constructa structural
representatiorf the scene.The systemassumeso a priori knowledgeof

any structurewithin theimage,but beginsbuilding a map of the sceneon a

frame by frame basis. The map showsregionsin the imagewherevehicles
are likely to be detectedand regions where they are likely to become
occluded.Trackingis complicatedby the fact thatthe vehiclesto betracked
are expectedo be a large distancefrom the cameraand as suchwill only

occupya smallnumberof imagepixels. The systemhasbeentestedusingan

input sequencef vehiclesmoving in a complex outdoor scene,wherethe
vehicles undergo both full and partial occlusion.

1 Introduction

Thereare many civilian and military applicationswhereit is importantto interpret
structuralfeaturesin a scenefor identification and tracking of man made objects
movingwithin thatsceneThe openworld scenehowevercanbe a compleximageto
analyse, particularly due to illumination variations within the image and the changing
poseof the object,eachof which complicatethe frameto frame matchingof objects
moving within the scene.Featurebasedgeometricmodel matching,[2, 4, 10] has
been shown to be vesuccessfufor identifying andtrackingobjectsmovingwithin a
openworld image,wherethe objectsto be trackedoccupya significantproportionof
the image; howeverthey are lesssuccessfulvhenthe objectto be trackedis further
awayfrom the cameraand henceonly occupyinga small proportionof the image.In
this caseit has beenfound that the matchingof crude object descriptorsis more
robust, [1, 3].

2 Overview

This systemusesa static cameraand frame differencing techniquefor detecting
motion in an image which has a relatively static background. Objects widasured
temporal consistencyare tracked acrosssuccessiveémage frames. Regionsin the

scene are identified with particular types of dynamic events, such as regions
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containingmovement(e.g. roads),regionswheremotion occursover relatively long
scales(e.g. car parks)and regionswherethe object seemsto disappeatror partially
disappear (occlusions).

An updating processis used to ensurethat a reliable estimate of the
backgroundreferenceémageis maintainedby the system.Motion cuesare matched
againsttrackedobjectsfrom the previousframesusing a simple model of temporal
continuity and a spatial-temporateasoningprocesss usedto infer imagestructure.
Becauseof the sensitivity of the motion estimatorto changesn sceneillumination
andmotiondueto wind etc, a tile-basedmethodis usedto detectscenemotion based
on the estimationof statisticalvariations.The systemis implementedn two stages,
firstly stagel performsthe detectionjdentificationandtrackingof objectsmovingin
the sceneandthe secondstageperformsthe spatial-temporateasoningwhich builds
up an interpretation of structural features within the scene.

3 Detection, Identification and Tracking

The detection,identification and tracking processis comprisedof two integrated
algorithms, namely (i) the image acquisition, motion detection and reference
generationand (ii) the targetidentification and tracking. The image acquisition,
motion detectionand referencegenerationalgorithm inputs digitised imagesand
applies a mediafilter to reducenoisecauseduringthe digitisationprocessinitially
the first imagefrom the input sequencés usedto providea setof referencegrey level
statistics(meanand standarddeviation)and a referenceedgeimageis generatedy
convolvingthe input imagewith a Marr-Hildreth edgeoperator{7] anddetectingthe
zero crossings.

Motion cues are generatedbasedon the results of grey level statistical
differencesbetweenconsecutiveframesof image dataand the referencegrey level
statistics. Thesemotion cuesform regionsof interest(ROI) within the image and
focusthe attentionof the targetidentification and tracking process A setof object
descriptorsare generatedor eachROI along with a measureof ‘edginess’which
gives an initial indication as to whetherthat ROI containsa possibletarget. The
tracking appliesa setof dynamicconstraintson the motion of ROI’s to help solve
frame to frame correspondencand increaseconfidencethat a tracked objectis a
target.

3.1 Image Acquisition, Motion Detection and
Reference Generation

Theimageacquisition,motion detectionandreferencegeneratioralgorithm provides
motion cuesfor objectsmovingin a scene.The algorithmis implementedin three
stages.Firstly imagesare filtered using a medianfilter and statistical analysisis
performedon four by four pixel regions(imagetile) in thefiltered 512 by 512 image
and for eachimage tile the mean and standarddeviation of the intensity are
calculatedA standard-testis usedto identify significantly different regionsbetween



the imagestatisticsof currentframe andthe image statisticsof the referenceframe,
hence determining regions that may contain motion (motion cues).

Motion detectionusing a frame differencing techniquerequiresa suitable
referenceémage(i.e. the backgroundandinitially the first imagein the sequencés
used tanitialise the backgrouncestimate The apparentnotion detectedn theimage
is storedeachframe,forming a history of the observednotionin theimagesequence.
In orderto adaptto illumination variations,an updating strategyis employedto
maintainthe validity of the referenceémage.This is donevia a statisticalanalysisof
the motion cues, since it is observed that the cue detection ratédémcieaseasthe
backgroundestimatediffers markedly from the true background.Figure 1 below
showsa typical imagesequencavherethe systemis trying to analyseandclassifythe
detected motion.

Figure 1: A threeframeclip from animagesequencef over 90
frames.The top threeimagesshowa vehicleleavingthe car park
moving up a slight gradient in a leét right direction,at the same
time a secondvehicleis turning right and enteringthe car park.
The car leaving the car park eventuallyoccludesthe vehicle that
entered the car park. The lower three images show the
corresponding enlarged portions of the originghgewherethese
vehicle are moving.

Every frame the update reference classificagimtesss ‘triggered’ andthe observed
motion isanalysedacrossa five framewindow with the mostrecentfive framesbeing
used. The classificationprocesscomparesthe statistical results obtainedfor the
currentwindow with pre-determinedimits on the size, type and numberof objects
moving within the scene.lf the apparentmotion is outside theselimits then the



classificationprocesaupdateghe backgroundwith the currentimage.Figure 2 below
shows the motion cues generated by the system for frames 2 to 69.

Figure 2: Motion cues generated
frames 2 to 69.

3.2 Target Identification and Tracking

The targetidentification and tracking algorithm identifies the regionsof interestas
either targets (man made vehicles) or objects (currently anything that is not
consideredo be a vehicle) and trackstheseregionson a frame by frame basis.The
trackingprovidesthe spatial-temporateasoningorocesswith dataon objectsmoving
within the image, and is implementedin three parts. First the regionsof interest
found are segmentedand a set of object descriptorscalculatedfor eachsegmented
region.Next edgeanalysisis performedon eachsegmentedegionand basedon this
analysisan initial identification of that region is made. Finally, dynamic motion
constraintsare appliedto the segmentedegionsto resolve object correspondences,
providing a further cue in the identification of a region.

Boundaryregionsare locatedusinga two passconnecteccomponentabelling
algorithm[6]. For eachof theselabelledregionsthe areaand centroid co-ordinates
arecalculatedusingthe zerothandnormalisedirst ordermomentsandthe min, max
X,y co-ordinatesare also determined.Thesecalculationsare all in tile co-ordinates
which areeasilytranslatedbackinto a setof co-ordinatesvhich definea rectangular
boundingboxin the original image(ROI). The frame number,numberof objectsfor
this frame, object descriptorsand window co-ordinatesare written into a object
analysis table.

Initial targetanalysisis performedon eachobjectin the table,in two stages,
namely:edgeextractionandinitial targetevaluation.The edgeextractionis carried
out usingthe Marr-Hildreth edgeoperator which hasthe samestandarddeviationto
thatusedin the generatiorof the referenceedgeimage.The initial targetanalysisis
attempting tddentify internalgeometricstructurein a ROI that could be usedto give
aninitial level of confidencethat the regionis a target.Man madeobjectscould be
assumedo consistof mainly straightline edgeswhich occurinfrequentlyin nature
[8]. The edgelswithin the region of interestcould thereforebe usedto provide an
initial identification of that region (anothercuein the identification process)Each



ROI is analysedand an ‘edginess’ measurecalculatedbasedon the ratio of edge
pixelsin the currentimageto edgepixelsin the referencémage.If the motion cue
hasbeengeneratedy anillumination changefor example thenthe edginesdor that
regionis expectedo be approximatelyunity asan edgedetectionoperationis fairly
robustto changesin illumination, in this casethe ROI is initially labelled as an
object. If the edge information in the ROI has change by a significant aifzotaitie
of 10% has beenfound to provide good systemperformance)}then this changeis
assumedio have been causedby a changein the structural featuresin the ROI
(somethinghasmovedinto that region)andis initially labelledasa target.Figure 3
shows the motion cues thahereunmatchedy thetargetidentificationandtracking
system for frames 3 to 69.

Figure 3: Un-matched motion cues
frames 3 to 69.

Howeverthe edgeinformationwithin theseregionscanbe very sparseconsequently
the edgeanalysisis only usedto give aninitial indicationasto whethera regionis a
targetor object. The resultsof the initial target analysistogetherwith the object
descriptorscalculatedfor eachregion are written to an objectdescriptiontable. The
generationof motion cuesand the initial targetanalysisis repeatedon a frame by
framebasis,with targetandobjectlabelsbeinggeneratesgachframefor everytarget
or objectfound. This actionforms a featurevectorfor eachobjectin the imageand
across the image sequence an array of feature vectors are formed.

To solve the problem of object correspondencéetweenframes, a priori
dynamicmotion constraintsare applied. The maximumacceleratiorand orientation
changeof objectsof interestwith respectto the cameracan be estimated a priori,
basedon the fact that objectsto betrackedaredistantfrom the cameraandthatthese
objectsare rigid. The constraintsare usedto control a searchalgorithm that is
attemptingto minimise a Euclideandistancemeasurebetweenobject vectorsin the
current frame and those in the previous frame.

All targetand objectlabelsthat satisfythe dynamicconstraintsare identified as
targetsanddisplayed.Targetlabelswhich havenot satisfiedthe dynamicconstraints
are re-labelled agbjects,andobjectsthat havefailed to meetthe dynamicconstraints
are no longer processedFigure 4 on the next pageshowsthe matchedand tracked
targets extracted by system for frames 3 to 69.



Figure 4: Detected and tracked targets
frames 3 to 69.

4 Spatial-Temporal Reasoning

It has already been demonstrated [11, 12] that the motiobjectsmovingwithin an
imagecanbe usedto constructsomeform of representatiomf thatimage.Herethe
spatial-temporateasoningorocesss attemptingto usethe motion of objectsmoving
within the scene,in this casevehicles,to form a structuralinterpretationof that
sceneThis interpretationtakesthe form of identifying areaswithin the imagewhere
vehicles can be expectedto be observedmoving and areaswhere vehicles could
become occluded.

The interpretationprocessis split into two main tasks. The first task is to
analysethe datasuppliedby the tracker,this datarepresentshe trajectoryof vehicles
moving in the image togetherwith a time index (frame number)and information
abouttheir size (area).The analysisgroupsthe trajectorydatainto connectedetsof
segmentswhich representspatial areasin the image where vehicles have been
observednoving (mapsegments)The secondtask takesthe map segmentgrom the
spatialanalysisprocessandappliesa spatialreasoningorocesdo the possiblespatial
and temporal relationships between these map segments.

4.1 Spatial Analysis

The spatial analysistakes the target tracking data output from the tracker and
constructssetsof linear map segmentdasedon the targettrajectories.The linear
segmentsare mappedinto the imagein tile co-ordinatesand linked using an 8-
neighbourhoodconnectivity algorithm. Each connectionmade betweenindividual
linear segmenthasan edginesdactor calculatedfor that segmentA time index is
included, based on the frame number, and an obserJatituris calculatedrom the
numberof instancesthat targetshavebeenobservedn that segmentThe structure
of a map segment is shown on the next page in figure 5.



@» 1...n U

|s Between

Figure 5: Map Segment.

4.2 Spatial Reasoning

The spatialanalysisprocesgeneratesnapsegmentsn tile co-ordinateghat describe
areaswithin theimagewherewe haveinferred motion; thesemapsegmentgorm the
building blocksfor the spatialreasoningorocessNo assumptiongre madeaboutany
a priori structurewithin the scenesoinitially all regionsin the maparelabelledas
being ‘unknown’, thus the system effectively starts with an empty map. The reasoning
processtakes the map segmentsand using a set of rules, infers the most likely
interpretationfor a region. This inferencemechanisnis structuredusing a semantic
network, which is shownin a simplified form in figure 6. The network consistsof
four arcs,namely‘part of', ‘add to’, ‘next to’ and ‘between’ and five objectnodes
‘road segment’, ‘ground segment’, ‘road’, ‘ground’ and ‘static’.

‘Part of’ takes a map segment and checks to see if it is part of a road segment
or part of a ground segment,jnvoking a set of spatial and structural operatorsto
accomplishthis task.If theidentified segmenis a repeatof a mapregion,then‘add
to’ addsit to thatmapregion,if the identified segmenthasnot beenobservedefore
then‘addto’ generatea newmapregionfor thatsegmentThe labelledregionseach
havea confidencefactor associatedvith the label, and this factor is increasedeach
time motion is observedwithin that region. The entire map is then scannedand
regionsthat havebeenidentified aseitherroador groundarecheckedo seeif any of
theseregionsare ‘next to’ one another.This operationenablesregionsof the map
that have beenidentified as areaswhere vehiclescan be expectedto be observed
moving, but arenot thoughtto beroadsto belinked to a road(a dirt track mayjoin a
road at a junction for example).

The ‘between’operationappliesa setof geometricrulesthat usesthe premise
that roadsor ground regionsare associatedvith motion and can be linked using
straightlines (roadsare consideredo be straight)within a searchspacelf links are
establishedetweeridentified regions,thoselinks arelabelledasstatic,i.e. thatarea
of theimagecould containan objectthat may occludevehiclesmovingin theimage.
Howeverif motion is observedin any spatial links establishedbetweenidentified
regions, the region is re-labelled as either road or ground.
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Figure 6: Simplified semantic network for spatial reasoning of map segments.

5. Discussion

A staticcam-cordemwas setup and an openworld image sequencdilmed showing
vehiclesand peoplemoving in that scene.From this sequence 90 frame clip was
digitised to disk at a rate of approximatelytwo framesa second.The detection,
identificationand tracking processshowedthat the statisticalanalysisremovedmost
of the false motion cuegeneratedy usinga framedifferencingtechniqueto perform
the motion detection,andthat sufficient resolutionstill remainedto detectandtrack
the vehiclesmoving in the imagedespitethe fact that someof thesevehiclesoccupy
an areaof lessthan 100 pixels. Techniqueghat useframe differencingto determine
motion between consecutive frames of imdgearequirea referencémagethat must
first be acquired and possibly updated in some f@@in, In this researchthe method
of reference update determinedy the numberof motion cuesdetectedn theimage
acrossa sliding window. Figure 7 showsthe rate of cue detectionover the entire
frame sequence, which increases as the image sequence is processed.

The increasein cuesis due to false cues being generatedby changing
illumination conditions,(the sequenceavasfilmed early eveningwith the sunsetting
behind the camera).At frame 75 the classification processupdatesthe reference
image data generatingnew statisticaland edge data by simply taking the current
imageframe.After the new referencedatawas generatedthe drop in the numberof
motion cuesperceivedin the imagewas reducedfrom 96 down to 3. Updatingthe
referencehad no effect on the constructedmap, and a van observedat frame 84
leaving the car park and turning right onto the main road whereit would become
occluded, was identified and tracked by the system.

The initial identification processtogether with constraintsplaced on the
motion of the objectsmoving in the image removedmost of the false motion cues
whilst still trackingactualtargets.Figure4 showsthe identified and trackedmotion
cues(vehicles) superimposean the original image. The tracking systemcannotat
presentresolvethe problem of multiple targettracking with tracked objectseither
partially or fully occluding eachother, however,Toad et al, [13] has shown that
reasoningstrategiescan be usedto overcomeproblemswith this type of occlusion.



The mapsegmentgeneratedy the spatialanalysisprocesslefinethe regionswithin
the image where vehicles have been detected.
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Figure 7: Plot showing the total number of motion cues found
per frame, classified into either targets (vehicles) or objects.

The spatialreasoningprocesshas groupedthesesegmentgo define areasin

the image where targets are expectedto be observed moving. The spatial
extrapolationusing the ‘between’ premiseidentified two areaswhere targetscould
undergoocclusion.The mapis constructen a frameby frame basisandfigures8a,

8b and8c belowshowa 2-D representationf the mapin tile co-ordinatesasit was
constructedthe systemis learningaboutstructuralfeaturesin the scene)or frames

15, 35, 55. White signifies areas where vehicle motion has been detected and in future
where the system should expect to observe further target motion.

Figure 8(a): Scene Map  Figure 8(b): Scene Map Figure 8(c): Scene Map
after 15 frames. after 35 frames. after 55 frames.

The map effectively representgontextual-informatioraboutthe scenelayout, which
could now be usedto improvethe targettracking[14], by focusingthe processingof
the system to those areas expected to contain target motion.



6. Conclusion

The systemdemonstratedhat it is capableof extractingand trackingman
madeobjects(vehicles)moving in an openworld imagesequencewhenthe tracked
vehicles are a large distancefrom the camera.The extracted motion data was
sufficientto constructa mapthatrepresentareasof the imagewherevehiclescanbe
expectedto be observedmoving and the use of simple spatial extrapolationrules,
areas in the image were determined where vehicles could become occluded.

Futurework is aimedat usingthis constructednapto improvethe tracking
of targetsby focusingthe attentionof the imageprocessinglgorithmsto thoseareas
expectedto containmotion and to developa strategyto alternatebetweenareasof
high activity andareasof low or no activity. A strategyis alsounderdevelopmenfor
the predicationof target occlusionso that when vehiclesbecomeoccludedin the
image, but are still in the field of view of the camera, they can still be tracked.
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