
algorithms make the determination of 3-D inter-frame motion a simple task.

Extensive experiments have been conducted to characterise the performance of the
algorithms with both synthetic and real image data. Experimental results have clearly
demonstrated the validity of the algorithms and the benefits of making full use of data
redundancy.
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easily be measured. The recovered dimensions from the four views are listed in Table 2.
In spite of non-perfect bilateral symmetry of the sponge, the recovered structure in each
view is very accurate.

6.3 Results of 3-D motion estimation

The 3-D motion estimation algorithm outlined in Section 5 was tested with the images
shown in Figures 6-8. In each case, one of the views was chosen as the reference frame
and the absolute orientation technique of Horn [15] was applied to determine the 3-D
motion between the reference frame and each of the other frames. The reference frames
for the three image sequences are respectively Fig.6(a), Fig.7(a) and Fig.8(a).

Since true motion parameters were unknown, the following procedure was adopted
to assess, indirectly, the accuracy of the recovered motion. For each sequence the camera
coordinates of all points in all frames (except the reference frame of course) were
predicted based on the recovered motion and the recovered camera coordinates of the
same points in the reference frame. Image positions of all points in all frames were
reconstructed from the predicted coordinates. The reconstructed positions were then
compared with the original image positions. The results are shown in Table 3. In all cases,
the average absolute error (distance) between the original and the reconstructed image
positions is around 1 pixel, indicating a good level of accuracy of the recovered motion
parameters.

7 Conclusions
Several novel algorithms have been described for recovering the range parameters of
bilateral symmetric objects using single perspective views. Unlike many existing
algorithms, the new algorithms do not rely on the error-prone process of vanishing point
detection. Particular attention has been given to the maximum exploitation of data
redundancy for the sake of noise robustness. It has been shown that the range recovery

Table 2 : Recovered dimensions (in mm) of the sponge sequence (Fig.8)

Distance Truth Fig.8(a) Fig.8(b) Fig.8(c) Fig.8(d)

P1Q1 113.00 113.00 113.00 113.00 113.00

P2Q2 151.00 150.98 149.14 152.18 151.14

P3Q3 60.00 57.98 58.24 60.61 57.62

P1P2 62.00 61.02 62.12 63.25 61.59

P2P3 84.00 83.28 82.09 87.14 84.02

Ave. Error (%) 0.00 1.16 1.33 1.51 0.99

Table 3 :  Errors (in pixels) between original and motion-reconstructed image points

Motion
Fig6(a)

to
Fig.6(b)

Fig.6(a)
to

Fig.6(c)

Fig.7(a)
to

Fig.7(b)

Fig.7(a)
to

Fig.7(c)

Fig.8(a)
to

Fig.8(b)

Fig.8(a)
to

Fig.8(c)

Fig.8(a)
to

Fig.8(d)

Ave. Error 0.54 0.82 0.97 0.89 1.11 1.30 0.62



Table 1. The true dimensions were measured by hand and therefore subject to some
measurement errors. Again the recovered structure tallies well with the measured ones,
with average relative range errors no greater than 2.5%.

The last example deals with a more complicated bilateral symmetric object. It is a
sponge used in packaging. Four views of the sponge are shown in Fig.8. Because of the

difficulties in measuring distances, only three point pairs were used whose distances can

Table 1 : Recovered dimensions (in mm) of the block sequence (Fig.7)

Distance Truth Fig.7(a) Fig.7(b) Fig.7(c)

P1Q1 73.00 73.00 73.00 73.00

P2Q2 73.00 74.27 74.76 73.38

P3Q3 73.00 73.03 74.7 72.98

P4Q4 73.00 71.42 73.71 76.31

P1P2 107.00 109.54 105.6 109.96

P2P3 31.00 29.25 33.59 31.21

P3P4 76.00 72.03 75.17 77.53

Ave. Error (%) 0.00 2.45 2.35 1.50

Figure 7: Three images of a block sequence. +s indicate the corner points used in
range recovery.
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algorithm becomes clearer with more points.

6.2 Range recovery of real objects

The algorithms were also applied to a number of real bilateral symmetric objects found in
our lab. Three examples are reported here to illustrate the typical performances of the
algorithms. The results given were obtained by the median algorithm but those by other
algorithms were not significantly different. The corner points were found by the Plessey
corner finder, and if the corner finder failed to locate a particular corner, the corner was
then identified by eye. The symmetric correspondences between the located corner points
were established manually (the automatic identification of symmetric points is a non-
trivial problem and is beyond the scope of the current paper).

The first example shown in Fig.6 deals with a planar object. The “tree” was first hand-
drawn and printed on paper. The printed version was then captured at three different

locations. The corner points used are indicated by +s. The true and recovered dimensions
(lengths of line segments connecting the corner points) of the tree were compared and the
average relative error was calculated for each location. The results for Fig.6(a)-(c) are
3.04%, 2.41% and 4.28% respectively. As a whole, the recovered structure is fairly
accurate and the average relative error does not exceed 5%.

The second example is a bilateral symmetric block. Four symmetric pairs were
located in three views as shown in Fig.7. The recovered dimensions are summarised in
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Figure 6: Three images of a “tree” sequence. +s indicate the corner points used
in range recovery.
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compare the performance of the various range recovery algorithms, whereas a number of
real objects were used to illustrate the performance of the algorithms with typical practical
data. This section reports the results of these experiments.

6.1 Range recovery of synthetic data

Synthetic data were generated by randomly selecting a specified number of pairs of
bilateral symmetric points within a cuboid using known camera parameters. Error in low-
level image processing was simulated by perturbing the ideal image coordinates of each
point by a random value  uniformly distributed in  (in pixels).  indicates the
level of noise. All images were of size 768x575 pixels.

The number of symmetric point pairs was first fixed at  and extensive Monte
Carlo simulations were conducted to investigate the effect of increasing noise level on the
accuracy of the recovered range parameters. The results of the simulations are
summarised in Fig.4. A number of interesting observations can be made from Fig.4:

• None of the algorithms has a relative range error greater than 20%, even under
the unrealistically high noise level of .

• The localisation of midpoints based on median operations (Equation (11))
greatly improves the performance of the basic and the median algorithm.

• As expected, the median algorithm always outperforms the basic algorithm,
though the difference is barely noticeable when both algorithms are enhanced
with median midpoints.

• When computational cost is at a premium, the basic algorithm enhanced with
median midpoints seems to be the best choice.

A second set of Monte Carlo simulations was conducted to see how the performance
of the algorithms may be improved by using more points. The results are plotted in Fig.5.
As expected, the performance of the basic algorithm is essentially unaffected by the
increasing number of points since the algorithm treats each pair independently. On the
other hand, that of the other algorithms all has noticeably been improved with more points
(though the improvement tends to saturate beyond 6-8 point pairs). The other interesting
observation from Fig.5 is that the advantage of the median algorithm over the basic
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accuracy of the located midpoints has a significant effect on that of the reconstructed
object. For a symmetric trapezium formed by two given pairs of symmetric points, the
basic and the median algorithm locate the two projected midpoints only by using the
image coordinates of the four corners of the corresponding trapezium, making no use of
data associated with other points.

This is rectified by the following to achieve further exploitation of data redundancy.
To determine the projected midpoint  of the first symmetry line , we consider
the  trapezia the symmetry line forms with each of the remaining  pairs. For
each trapezium, we locate  according to Fig.2(b). This produces a list of
candidate positions for , all lying on the image line segment :

(10)

where the superscript  indicates the image position determined in the  trapezium.
For the sake of noise robustness, the final solution for  is determined by the following
median operation:

(11)

The projected midpoints of other symmetry lines are determined similarly. The image
coordinates of the midpoints so recovered can then be used by the basic and the median
algorithm.

5 Determination of inter-frame motion
The previous sections show that bilateral symmetry can be exploited to facilitate 3-D
monocular reconstruction. Bilateral symmetry also greatly simplifies the determination of
3-D inter-frame motion. Let us consider the recovery of the 3-D motion of a bilateral
symmetric object between two frames. We assume known intra-frame symmetric
correspondences and inter-frame point correspondences. The problem is the well-known
structure-from-motion (SFM) problem and may be solved using one of the many existing
methods [13].

Here we show that by using the algorithms presented in the previous sections, the 3-
D motion of a bilateral symmetric object can be determined in a very simple and efficient
way, and closed-form solutions only require a minimum of two symmetric point pairs. For
each view, the algorithms of the previous sections are employed to recover the range
parameters of all points. The determined range parameters are then used to compute the
3-D camera coordinates of the points (using Equation (2)). The global scale in each frame
may be resolved by assuming the same length (e.g., unit length) of the same symmetry
line so as to ensure consistent inter-frame scale. At the end of this process, we obtain a set
of 3-D to 3-D point correspondences with known camera coordinates. The 3-D inter-
frame motion can then easily be determined by using one of the standard absolute
orientation algorithms. Several of these algorithms, e.g., Arun, Huang and Blostein [14],
and Horn [15], provide efficient closed-form solutions.

6 Experimental results
A large set of experiments were carried out to characterise the performance of the
algorithms described in the previous sections. Synthetic data were used to quantify and
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simple straightforward extension of the trapezium algorithm outlined in the preceding
section to algorithms which take full advantage of data redundancy for the sake of noise
robustness.

4.1 The basic algorithm

For an object with  pairs of bilateral symmetric points , any two
pairs  and  ( ) form a symmetric trapezium. To determine the
ranges of the  points, we consider the  trapezia formed by the first pair

 and each of the remaining  pairs . For each
trapezium, we recover its ranges using the trapezium reconstruction algorithm outlined in
the previous section. This way the first pair  is used as the reference pair and
the ranges of all points are recovered up to a common global scale.

4.2 The median algorithm

Although simple, the basic algorithm has a problem with noisy data. Since the first pair is
directly involved in the recovery of all points, the successful reconstruction of the overall
object is overly dependent on the accuracy of the data associated with the first pair. This
is clearly undesirable. Without anya priori knowledge, there is no reason to favour the
first pair over other pairs.

The bias towards the first pair is eliminated by applying the basic algorithm  times,
each time with a different reference pair. This process generates  sets of range
parameters:

(7)

where the superscript  indicates the range parameters determined using the  pair as
the reference pair. Because the reference pairs are different, each set of range parameters
in Equation (7) is in general subject to a different global scale. The  sets can be brought
to the same global scale by setting the range of one of the points to a common value (say
1.0). This may be achieved, for example, by dividing the ranges of each set by that of the
first point. We denote the  sets of normalised range parameters as

(8)

Under noise-free conditions, the  normalised sets should be identical since they
describe the normalised structure of the same object. When data is contaminated by noise,
however, this is no longer true. The final set of range parameters is determined by the
following median operations:

(9)

The global scaling factor in the recovered range parameters may be resolved by knowing
the absolute range of one of the points, or the length of one of the symmetry lines, or any
other equivalent absolute information.

4.3 Robust localisation of midpoints

The performance of the median algorithm can be further improved by making additional
use of data redundancy. A central step in the basic algorithm and hence the median
algorithm is the localisation of the projected midpoints of the symmetry lines. The
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image positions of the four corners of a symmetric trapezium, the image positions of the
two midpoints can be determined according to Fig.2(b).

To determine the ranges of the four corners and the two midpoints of the trapezium,
we consider the triangle  on the interpretation plane defined by the focal point

 and the image points  and  (see Fig.3). The similarity of the two triangles

 and  leads to the following (see [11] for derivation):

(3)

By considering the triangle  and following the same procedure, we obtain
similar expressions for  and :

(4)

From the fact that the line connecting the two midpoints is perpendicular to the symmetry
lines, we can relate  and  to each other [11]:

(5)

Equations (3)-(5) simply indicate that the ranges of the trapezium can be recovered up to
a global scale as summarised in the following:

(6)

4 Reconstruction of general objects
We now turn our attention to the determination of the range parameters of points on a
general bilateral symmetric object. Several algorithms are described, ranging from the
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Ulupinar and Nevatia [7], Mitsumoto et. al. [8], Glachet et. al. [9], and Rothwell et. al.
[10]. Most of these approaches use thevanishing point (VP) of the symmetry lines.

The detection of VPs in a single image is notoriously unstable unless the perspective
distortion is severe. A non-VP-based approach is therefore preferred in practice. In our
previous work [11], we described a simple algorithm for reconstructing bilateral
symmetric trapezia from their perspective projections (image quadrilaterals). The
algorithm does not involve direct computation of VPs. In this paper we extend the
trapezium algorithm of [11] to more general 2-D and 3-D bilateral symmetric objects.
Several novel algorithms are described and extensive experiments are reported. The
algorithms presented here will prove useful for interactive construction of 3-D geometric
models of objects such as vehicles [12].

2 Imaging geometry and notations
The imaging geometry assumed in this paper is depicted in Fig.1. The origin of the camera

coordinate system (CCS) is the focal point. The optical axis of the camera is aligned with
the Y-axis of the CCS. The image plane is at a known distance  in front of the focal point
and is orthogonal to the optical axis. The abscissa axis (the u-axis) of the image plane is
parallel to the X-axis and the ordinate axis (the v-axis) to the Z-axis.

For a given 3-D point , we use  to represent its camera coordinates,
its image position, and  the unit direction vector from the focal point  to the image
point . Under the imaging geometry shown in Fig.1, the unit vector is given by

(1)

and the camera coordinates by

(2)

where  is the range of  (the distance from the focal point  to ). The symmetrical
point of  is denoted by , and the counterparts of  and  by  and
respectively. The midpoint of the symmetry line  is indicated by , and its camera
coordinates, image-plane position, unit direction vector and range by , ,  and .

3 Trapezium reconstruction
A symmetric trapezium and its perspective image are labelled as shown in Fig.2. By
construction, image points  and  of Fig.2(b) are the perspective projections of the
midpoints  and  of the two symmetry lines  and . Thus given the
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Abstract

This paper concerns the 3-D monocular reconstruction of general bilateral
symmetrical objects from a single perspective view. Bilateral symmetry is also
exploited to simplify the estimation of 3-D inter-frame motion of such objects.
Particular attention is given to the maximum exploitation of data redundancy for the
sake of noise robustness. Several novel algorithms are described for recovering the
range parameters of object points from their image coordinates in a single
perspective view. The algorithms allow the 3-D inter-frame motion to be computed
using well-known closed-form absolute orientation techniques. Experimental
results with synthetic and a number of real objects are included to demonstrate the
performance of the algorithms.

1 Introduction
Shape symmetry can be found in many objects [1]. Symmetry provides strong cues for
human visual perception [2]. This paper concerns what is probably the most common
form of symmetry - bilateral symmetry, which is also called reflectional or mirror
symmetry. In this paper the lines connecting the bilateral symmetric points are termed as
symmetry lines. For perfect bilateral symmetry, the midpoints of all symmetry lines lie on
the same line (called thesymmetry axis for 2-D objects) or the same plane (called the
symmetry plane for 3-D objects). Symmetry lines are parallel to each other, and are
perpendicular to the symmetry axis or plane.

The nature of projection determines whether the midpoints, parallelism and
perpendicularity of the symmetry lines are preserved or not after the 3-D to 2-D
projection. If the projection is orthographic, midpoints and parallelism remain true but
perpendicularity is lost. This gives rise to the so-calledskewed symmetry. The most
difficult case is full perspective projection which invalidates both the midpoints,
parallelism and perpendicularity. In this case the projected symmetry lines intersect at a
common point (thevanishing point) on the image plane. For convenience, we call the
perspective projection of 3-D bilateral symmetryperspective symmetry.

Symmetry has been an active research area in the computer vision community for the
past two decades or so. A plethora of approaches have been reported in the context of
skewed symmetry analysis (e.g., [3-6]). These approaches assume (scaled) orthographic
projection, and typically focus on the detection of the symmetry axis of 2-D bilateral
symmetric shapes on the image plane. In contrast, work on perspective symmetry analysis
has been very limited indeed. The best-known published work in the area includes


