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The free-form surface matching problem remains a di�cult problem. Severalfactors make it di�cult. We may not assume that simple features such as spheres,cylinders or planes can be extracted. Also, the points on a surface cannot beordered as they can in the case of a curve.The task of �nding an accurate registration is usually handled by the iterativeclosest point (ICP) algorithm (Besl and McKay, 1992). This method �nds thenearest local minimum of a cost function formulated in pose space. This meansthat the user must supply an initial guess reasonably close to the global minimum.This paper presents a method that could automatically supply this guess. Werefer to the process of pose re�nement as registration and �nding initial guesses asmatching.We cast the problem of matching two free-form surfaces as a search or optimi-sation problem in correspondence space. This leads to a problem with many localoptima, where we are interested in the global optimum. Recently Mean Field the-ory has attracted attention as a powerful tool for optimisation problems. Becauseit is an annealed method it has a better chance of �nding global optima thansimple gradient descent methods.The problem we address is as follows. Suppose there is some detailed surfacemodel of an object and this object is imaged using a range sensor giving 3Dinformation, then we are seeking the transformation that will bring the model and
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the data into alignment. In a single view the object is only partly imaged and theimage may contain measurements of other objects. Of course the \model" may bethe data from another view.For a discussion on free-form surface matching see Besl's survey article (1992).Recent work on matching free-form surfaces includes (Bergevin et al., 1995) and(Hebert et al., 1995). We should note that although our method does not makerestrictive assumptions such as convexity or the absence of clutter it is not wellsuited to surfaces consisting largely of a few planes, cylinders or spheres. Othermethods exist in this case. We do not rely on reliable extraction of features suchas zero crossings of curvature. There are no restrictions on the topology. Theremay be holes, discontinuities or clutter. We do require some `reasonable' amountof overlap between scene and model.In related work we have explored use of Genetic Algorithms in place of MFT(Brunnstr�om and Stoddart, 1995, 1996)2 Free-Form Surface MatchingPeterson and S�oderberg (1989) have introduced a new and powerful type of neuralnet based on Mean Field theory (MFT). Due to limitations of space we refer thereader to the original paper for further details, and simply note that MFT is aoptimiser suited to labelling problems, and is similar in scope to the Hop�eldneural net and Probabilistic Relaxation.To apply Mean Field theory to free-form surface matching, the problem mustbe formulated as a discrete labelling problem. This is done by randomly samplingthe model surface to a `su�cient' density, and randomly sampling the scene surfaceto a similar density. We now pose the problem as a point matching problem. Wewish to label (associate) each point in the scene with a point from the model, ora null label. Because the points are randomly chosen we don't expect an exactmatch. However, when sampled to a su�cient density we hope to match to arelatively close point.Based on this sampling we need to formulate an objective function that mea-sures the quality of the match. This objective function will be described in detailbelow. It is based on a function that counts the number of good matches, by usingthe translational and rotational invariants such as relative orientation of surfacenormals and distances between points.2.1 The objective functionThe objective function must measure match quality in correspondence space, soit is designed to be invariant to translation or rotation. Because of the randomnature of the sampling we can never achieve an exact match but there will usuallybe reasonably good approximate matches. The quality of the best match will bea function of the average spacing between the randomly selected points on thesurface.We suppose that the M model points are labelled by � = 1::M and the Nscene points are labelled by i or j = 1::N . If scene point i takes on label � this is



British Machine Vision Conference
denoted by �i. We denote a joint labelling of all objects by the set f�1; �2; :::�Ng.As a shorthand we de�ne the multi-index ~� = f�1; �2; :::�Ng.Now suppose that we choose 2 points i; j from the scene surface. They willcontain 4 vectors (2 positions and 2 normal vectors) of information between them,i.e. ~ri; n̂i; ~rj ; n̂j . There are 10 independent parameters and 4 invariants under rigidtranslation and rotation. We are interested in features that remain invariant torotation and translation. The most obvious is the length of the vector ~vij frompoint i to point j, i.e. ~vij � ~rj � ~ri.Pairwise relative orientation is also an invariant. Suppose we de�ne the angle�ij as cos(�ij) = n̂j � ~vij (1)The angles �ij and �ji form two additional invariants.Finally there will be a twist angle between the two normals representing theextent to which they are out of plane. We de�ne this angle as �ij given bycos(�ij) = d(n̂j � ~vij) � d(n̂i � ~vij) (2)Now consider two model points and two scene points. We wish to de�ne apairwise match quality E(�i; �j) which will be a product over four terms. The�rst term ed(�i; �j) can then be expressed ased(�i; �j) = exp�� [j~v�i�j j � j~vij j]22�2 � (3)For a perfect match this returns 1, and decays as a Gaussian with standard devia-tion �. Clearly � must be related to measurement noise and sampling density. Weexpect the sampling density to dominate here, and we use a simple probabilisticmodel to determine �. We do not tune �.Suppose we have M points randomly distributed on a model surface with areaA. The density will be � = N=A. For an in�nite plane the distance to the nearestpoint will be given by a Poisson distribution and the expected value of the distanceto the closest point will be �( 32 )p �� . This is used as the basis for selecting �. Forsimplicity we always set the sampling density to be the same on the scene and themodel.The angular quality measure is de�ned asen(�i; �j) = exp�� (��i;�j � �ij)2 + (��j ;�i � �ji)2 + (��i;�j � �ij)22�2 � (4)As the normal is a derivative quantity we assume that the error will be dominatedby the measurement error and not the random sampling process. This is trueon gently varying surfaces, but not those with many small details. We select theparameter � from an estimate of the typical error in a surface normal. We use avalue for � = 20� throughout this paper. Finally we obtain the pairwise qualitymeasure we require E(�i; �j) = �ed(�i; �j)en(�i; �j) (5)This quantity is equal to -1 for a perfect match and degrades to zero. The minussign is inserted because in MFT we minimise energy. From this expression we can�nd the energy E(�i) of a single object given all the labels ~�,
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E(�i) =Xj 6=i E(�i; �j) (6)This measure will range between 0 to �(N � 1). We can also �nd the globalobjective function for a particular labelling ~� by summing up all the pairwiserelations i.e. E(~�) = 2Xi Xj<i E(�i; �j) =Xi E(�i) (7)This measure will range between 0 to �N(N � 1).2.2 Mean Field theoryThe detailed derivation of the MFT algorithm is too long to present here, so werestrict ourselves to a short summary, and refer the reader to the Peterson andS�oderberg paper (1989) for more details.The �rst step is to introduce a temperature parameter T . It is assumed thatthere is some probability distributionp(~�) = 1Z exp��E(~�)T � (8)Z is a normalising factor and the probability distribution is called the Gibbs orBoltzmann distribution. The detailed probability is of space complexity MN soinstead a mean �eld approximation is sought, which we denote r(�i). This is the\probability" that object i takes on label �. There are NM such label weightings,sometimes referred to as a soft labelling assignment. The full complexity of thejoint probability distribution has been discarded.For a �xed temperature we can iterate the following equations which convergeto the `true' value of r(�i). We compute an intermediate `support' q(�i) given byq(n+1)(�i) =Xj X�j E(�i; �j)r(n)(�j) (9)The r(�i) are then updated byr(n+1)(�i) = expfq(n+1)(�i)=TgP�0i expfq(n+1)(�0i)=Tg (10)This system of equations is then annealed, that is the temperature T is reducedfrom a high value to a low value. This aspect resembles simulated annealing.The resemblance to a Hop�eld neural network may now be seen. The supportin equation (9) is identical to the way inputs are combined in an ordinary neuron.The r update equation (10) is a straightforward generalisation of the neuron ac-tivation function. When there are only 2 labels this reduces to the conventionalneuron activation function, and one input/output wire may be disregarded. Thetemperature corresponds to the gain parameter of a neuron.
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How is the cooling schedule chosen? In simple optimisation problems like thisone the energy de�ned byE[r] =Xij X�i;�j r(�i)E(�i; �j)r(�j ) (11)usually undergoes a sigmoidal transition from a high value to a low value over adistinct range of temperatures. This corresponds to the speci�c heat of some spinsystems in thermodynamics. A crude cooling schedule can be chosen by startingabove this transition region and following a geometric progression until below theregion. In our case this means starting at T = 5 and decreasing T by T ! 0:8Tuntil T < 0:2Once again we note that our method is not suited to problems with continuoussymmetries such as planes or cylinders. The reason is that the objective functionwill begin to have valley like structures and the method will degrade.Finally the labelling ~� needs to be processed further to produce the requiredpose estimate. Our procedure is simply to choose the k objects with lowest energy.These give us k point correspondences and we then use a conventional least-squares�t to obtain the pose (Kanatani, 1994).2.3 ComplexityWhat is the complexity of this basic method? If the label weights r are updatedover i iterations then the complexity will be O(iN2M2). To accurately represent acomplicated surface by points we need many of them - this means our complexityis potentially very high.If we knew only that we should optimise the energy as given by equation (11)this may be about the best we could expect of any method to �nd the global opti-mum. However we do have additional knowledge of the problem, and in almost anyoptimisation problem using some additional knowledge can enhance performance.How can we express and use this knowledge? The knowledge we have is thatthe data come from some 3 dimensional space - the E(�i; �j) follow a pattern,and are not simply random numbers. In particular many of them are zero, and itturns out that this knowledge is the easiest to exploit.One of the most e�cient schemes for matching is geometric hashing (Lam-dan and Wolfson, 1988). For a problem with binary invariants it has complexityO(kN2 + kM2) where k is a constant depending on the density of the hash table.In the next section we borrow some ideas from geometric hashing to dramaticallyreduce the computational complexity.3 Hash-based supportThe bulk of the computational complexity comes from the computation of thesupport, as given by equation (9). This involves a loop over i; �i; j; �j which is ofcomplexity N2M2.The energies E(�i; �j) are only signi�cantly non-zero when all 4 scene invari-ants are within a few � or � of the respective model invariants. We may exploit
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this by use of a hash table. We �rstly select a few invariants to hash on, forexample the distance and one angle.A discrete hash table is set up with bins of size about � by �. Each of theN(N � 1) model invariants are computed and (�; �0) is stored in the hash table.This step is of order M2.This pre-stored hash table by now be used to compute the support. Theinvariants corresponding to all scene pairs are computed and used as keys to hashinto the table. The model pairs within some preset threshold are retrieved. Thenthe support q(n+1)(�i) is increased by adding a termE(�i; �j)r(n)(�j) (12)Providing the threshold is chosen suitably this method of computing the supportwill give an almost identical result to the previous method. However the complex-ity reduces to O(kN2) per iteration where k is the hit rate.In the worst case the hit rate could be k =M2 and no advantage would accrue.In the best case the hit rate is k = 1 and traditional geometric hashing alone wouldprovide a good answer. Geometric hashing breaks down when the hit rate risesto the point where no clear overall match is selected or the cost of verifying falsematches becomes too high.The MFT version continues to work well beyond this since it is capable of�nding the globally optimum labelling in terms of the objective function. Thecase of free form surface matching is within this `hashing breakdown zone', sincealmost every object-label match will receive many votes. It is the annealing stepsthat allow a globally best match to emerge.The overall complexity of this method is O(ikN2 +M2). Since i is about 10,it is slower than pure geometric hashing but compared to the original O(iN2M2)of MFT it is a vast improvement.4 ResultsWe will here present a few experiments illustrating the strengths and weaknessesof the presented approach to free-form surface matching.The �rst data set we will show is the `foot' surface. This model consists of3000 polygons generated from a range data set by a deformable surface. In �gure4(a) we see the actual model. We attempt to register the foot with itself as the�rst experiment. We choose 40 points on the scene and 40 points on the data.The e�ects of this can be seen in �gure 4(b) where we align the scene and modeland show the 40 scene and 40 model points spread randomly on the model. Theshortest point-to-point distances are typical of the best match we can expect. Aswe have mentioned, the matcher is stochastic because it samples the surface atrandom. The performance then should be judged by how often it gets the relativepose close enough to start an iterative closest point algorithm. Of the 2 parametersthe translation is usually less open to question, so we use the rotation to judgethe success of the algorithm. We regard a rotation of less than 25 degrees (aroundany axis) to be a success. By this criterion we get a 5 out of 10 success rate fromsampling 20 points each from the scene and model. With 40 points each we get a
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(a) (b) (c)Figure 1: The foot dataset. (a) shows the scene and model, (b) shows 80 randompoints on the foot (c) shows the resulting registration10 out of 10 success rate. For half of these runs the rotation is accurate to within5 degrees. In �gure (c) we see a typical result.The next example we consider is a bust of Beethoven. This consists of 5000triangles. We match the object to itself. In �gure 2(a) we show the bust and in�gure 2(b) we show a typical result.

(a) (b)Figure 2: The Beethoven dataset. (a) shows the scene(=model) (b) shows theresulting registrationWe now move on to consider data sets with clutter and noise, and where thescene and model di�er. The �rst data set is the bunny data set. This is rangedata, subsampled and converted to a triangular mesh of 5000 triangles from eachview. The previous examples are in cases where the normal is corrupted by therandom sampling process, but in this case there is additional sensor noise. Thesensor noise will primarily a�ect the normals computed from the triangles becausethey depend on a derivative.Figure 4(a) and 4(b) show the scene and model that we match. In �gure 4(c)we show the match achieved. The success rate is 9 out of 10.In the next examples we consider rather more complicated objects. In �gure 4(a) we present the cow model consisting of 6000 triangles. In �gure 4 (b) we showa successful match. We used 100 points on the scene and model. The success rateis 4 out of 10. The main problem here is that there is an approximate symmetry
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Data Set N M Success Ratefoot 20 20 5/10foot 40 40 10/10Beethoven 40 40 7/10Bunny 40 40 9/10Cow 100 100 4/10Soldier 120 120 7/10Table 1: Summary of results

Figure 3: The bunny dataset. (a) shows the scene and (b) shows the model, (c)shows the resulting registrationwhen the cow faces backwards. The largest piece of surface is the stomach, andthis matches quite well between these two positions. We believe that this problemcan be overcome by focusing more points on the areas of the surface with highcurvature but small area. When it does achieve a match the accuracy of thealignment is quite good and in the example shown the accuracy is better than 2degrees. The worst error is 5 degrees. The �nal dataset that we will consider isthe soldier. This consists of two overlapping views of a toy soldier each consistingof about 20000 triangles. In �gure 4(a) and (b) we show a reconstruction of theentire soldier performed from several views by (Hilton et al., 1996). In �gures (c)and (d) we show two overlapping views of the soldier that we will try and match.In �gure (e) we show one of the matches with accuracy of about 3 degrees. Themismatch is visible when comparing the helmet with �gure (f). When run with80 points in both scene and model we achieved a 4 out of 10 success rate, usinga threshold of 14 degrees to de�ne success. The rate rose to 7 out of 10 whenN = M = 120. All seven lie within 14 degrees of the correct result and 4 liewithin 5 degrees.The algorithm was coded in C++ and run on a Sun workstation. The executiontime for a 40x40 point match is 20 seconds and for a 80x80 run it is 90 seconds.The approximate dependence on N2 may be noted.
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(a) (b)Figure 4: The cow dataset. (a) shows the scene and (b) shows the resultingregistration5 DiscussionWe have in this paper presented a simple approach for �nding the initial guess forthe free-form matching problem. We presented promising results for several datasets. The algorithm is based on a powerful optimisation technique from mean �eldtheory.The basic steps of the algorithm are as follows. The scene and model sur-faces are randomly sampled. Using binary invariants this is formulated as a pointmatching problem and optimised using mean �eld theory. High scoring points areused to compute the required transformation. The basic algorithm has the samearchitecture as a recurrent neural network. Since mean �eld theory has a anneal-ing schedule it is an approximate global optimiser, unlike gradient descent typemethods.The basic algorithm is of complexity A2 where A is the area of the scene andmodel. We present an algorithmic shortcut that can reduce the complexity to asimilar complexity to Geometric Hashing, i.e. of order nearly A. There need beno drop in performance relative to the full MFT theory.This algorithm is unusual in that it does not use any second derivative infor-mation. This gives it wide applicability and could be seen as a major advantage.On the other hand we we believe that there is considerable scope for re�nementof the algorithm. In particular if we begin to incorporate curvature information,either as a unary cost or as a selective surface sampling technique we expectmajor improvements in performance. This is because the use of curvature wouldsupplement an already viable method, rather than being a intrinsic component ofthe method.Finally we would like to acknowledge the sources of the data. The foot modelis based on Cyberware data supplied by Tim McInerney, using the Slime package.The Beethoven and the Cow models were produced by Viewpoint Animation usinga mechanical digitiser. The bunny dataset was used by Turk and Levoy in theirzipper paper. The soldier data set was used by Soucy and Laurendau and collectedby M. Rioux of the National Research Council of Canada.
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(a) (b) (c)
(d) (e) (f)Figure 5: The soldier dataset. (a) and (b) show views of the reconstructed soldier.(c) and (d) show two views that we use as scene and model. (e) shows the resultingregistration and (f) shows the exact registrationReferencesBergevin, R., Laurendeau, D., and Poussart, D. (1995). Registering range view ofmultipart objects. Computer Vision and Image Understanding, 61, no. 1, 1{16.Besl, P.J. and McKay, N.D. (1992). A method for registration of 3-d shapes. IEEETrans. Pattern Analysis and Machine Intell., 14, no. 2, 239{256.Brunnstr�om, K. and Stoddart, A. J. (1995). Genetic algorithms for free-formsurface matching. CVAP181, Tech. Rep., Oct. 1995.Brunnstr�om, K. and Stoddart, A. J. (1996). Genetic algorithms for free-formsurface matching. In 13th Int. Conference on Pattern Recognition, Vienna,Austria.Hebert, M., Ikeuchi, K., and Delinguette, H. (1995). A spherical representation forrecognition of free form surfaces. IEEE Trans. Pattern Analysis and MachineIntell., 17, no. 7, 681{690.Hilton, A., Stoddart, A. J., Illingworth, J., and Windeatt, T. (1996). Reliable sur-face reconstruction from multiple range images. In Fourth European Conferenceon Computer Vision, pp. 117{126, Cambridge, U.K.Kanatani, K. (1994). Analysis of 3-d rotation �tting. IEEE Trans. Pattern Anal-ysis and Machine Intell., 16, no. 5, 543{549.Lamdan, Y. and Wolfson, H.J. (1988). Geometric hashing: a general and e�cientmodel-based recognition scheme. In 1st Int. Conference on Computer Vision,pp. 238{249, London, U.K.Peterson, C. and S�oderberg, B. (1989). A new method for mapping optimizationproblems onto neural networks. Int. Journal of Neural Systems, 1, no. 1, 3{22.


