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Abstract

A new method for free-form surface matching is presented. The method
provides an initial guess of the transformation, which may subsequently
be refined by the Iterated Closest Point method.

The algorithm is based on Mean Field Theory (MFT). MFT has
recently been shown to be a powerful optimization technique. It has a
very similar architecture to a Hopfield neural network, but is consider-
ably more effective. We also show how the computational complexity
can be substantially improved by a hashing scheme. This combination
of geometric hashing with MFT is likely to be applicable to many other
recognition and labelling problems.

1 Introduction

The free-form surface matching problem remains a difficult problem. Several
factors make it difficult. We may not assume that simple features such as spheres,
cylinders or planes can be extracted. Also, the points on a surface cannot be
ordered as they can in the case of a curve.

The task of finding an accurate registration is usually handled by the iterative
closest point (ICP) algorithm (Besl and McKay, 1992). This method finds the
nearest local minimum of a cost function formulated in pose space. This means
that the user must supply an initial guess reasonably close to the global minimum.
This paper presents a method that could automatically supply this guess. We
refer to the process of pose refinement as registration and finding initial guesses as
matching.

We cast the problem of matching two free-form surfaces as a search or optimi-
sation problem in correspondence space. This leads to a problem with many local
optima, where we are interested in the global optimum. Recently Mean Field the-
ory has attracted attention as a powerful tool for optimisation problems. Because
it is an annealed method it has a better chance of finding global optima than
simple gradient descent methods.

The problem we address is as follows. Suppose there is some detailed surface
model of an object and this object is imaged using a range sensor giving 3D
information, then we are seeking the transformation that will bring the model and
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the data into alignment. In a single view the object is only partly imaged and the
image may contain measurements of other objects. Of course the “model” may be
the data from another view.

For a discussion on free-form surface matching see Bes!’s survey article (1992).
Recent work on matching free-form surfaces includes (Bergevin et al., 1995) and
(Hebert et al., 1995). We should note that although our method does not make
restrictive assumptions such as convexity or the absence of clutter it is not well
suited to surfaces consisting largely of a few planes, cylinders or spheres. Other
methods exist in this case. We do not rely on reliable extraction of features such
as zero crossings of curvature. There are no restrictions on the topology. There
may be holes, discontinuities or clutter. We do require some ‘reasonable’ amount
of overlap between scene and model.

In related work we have explored use of Genetic Algorithms in place of MFT
(Brunnstrém and Stoddart, 1995, 1996)

2 Free-Form Surface Matching

Peterson and Séderberg (1989) have introduced a new and powerful type of neural
net based on Mean Field theory (MFT). Due to limitations of space we refer the
reader to the original paper for further details, and simply note that MFT is a
optimiser suited to labelling problems, and is similar in scope to the Hopfield
neural net and Probabilistic Relaxation.

To apply Mean Field theory to free-form surface matching, the problem must
be formulated as a discrete labelling problem. This is done by randomly sampling
the model surface to a ‘sufficient’ density, and randomly sampling the scene surface
to a similar density. We now pose the problem as a point matching problem. We
wish to label (associate) each point in the scene with a point from the model, or
a null label. Because the points are randomly chosen we don’t expect an exact
match. However, when sampled to a sufficient density we hope to match to a
relatively close point.

Based on this sampling we need to formulate an objective function that mea-
sures the quality of the match. This objective function will be described in detail
below. It is based on a function that counts the number of good matches, by using
the translational and rotational invariants such as relative orientation of surface
normals and distances between points.

2.1 The objective function

The objective function must measure match quality in correspondence space, so
it is designed to be invariant to translation or rotation. Because of the random
nature of the sampling we can never achieve an exact match but there will usually
be reasonably good approximate matches. The quality of the best match will be
a function of the average spacing between the randomly selected points on the
surface.

We suppose that the M model points are labelled by o = 1..M and the N
scene points are labelled by i or j = 1..N. If scene point i takes on label « this is
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denoted by «;. We denote a joint labelling of all objects by the set {aq, as,...an}.
As a shorthand we define the multi-index & = {1, az,...an}.

Now suppose that we choose 2 points ,j from the scene surface. They will
contain 4 vectors (2 positions and 2 normal vectors) of information between them,
i.e. 75, n4,7;,nj. There are 10 independent parameters and 4 invariants under rigid
translation and rotation. We are interested in features that remain invariant to
rotation and translation. The most obvious is the length of the vector ;; from
point ¢ to point j, i.e. ¥;; =7 — 7.

Pairwise relative orientation is also an invariant. Suppose we define the angle
0ij as

cos(0y;) = nj - Uij (1)
The angles 0;; and §;; form two additional invariants.

Finally there will be a twist angle between the two normals representing the

extent to which they are out of plane. We define this angle as 3;; given by
cos(By;) = (rij x Uy5) - (i % Uy;) (2)

Now consider two model points and two scene points. We wish to define a
pairwise match quality E(c;,a;) which will be a product over four terms. The
first term eq(cv, oj) can then be expressed as

[|Ta;a;| — |77z'j|]2}

202

calas) = exp { - g
For a perfect match this returns 1, and decays as a Gaussian with standard devia-
tion o. Clearly o must be related to measurement noise and sampling density. We
expect the sampling density to dominate here, and we use a simple probabilistic
model to determine 0. We do not tune o.

Suppose we have M points randomly distributed on a model surface with area
A. The density will be p = N/A. For an infinite plane the distance to the nearest
point will be given by a Poisson distribution and the expected value of the distance
to the closest point will be F(%)\/g This is used as the basis for selecting o. For
simplicity we always set the sampling density to be the same on the scene and the
model.

The angular quality measure is defined as

(eai,aj - 0ij)2 + (9a17ai - ej'i)2 + (ﬁam%‘ - ﬂij)Q
212

As the normal is a derivative quantity we assume that the error will be dominated
by the measurement error and not the random sampling process. This is true
on gently varying surfaces, but not those with many small details. We select the
parameter y from an estimate of the typical error in a surface normal. We use a
value for u = 20° throughout this paper. Finally we obtain the pairwise quality
measure we require

en(@i, ;) = exp {— (4)

E(aiaaj) = _ed(aiaaj)en(aiaaj) (5)

This quantity is equal to -1 for a perfect match and degrades to zero. The minus
sign is inserted because in MFT we minimise energy. From this expression we can
find the energy E(«;) of a single object given all the labels &,
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E(ai) =) E(ai, ay) (6)

JF#i
This measure will range between 0 to —(N — 1). We can also find the global
objective function for a particular labelling & by summing up all the pairwise

relations i.e.
BE@) =2 El(a,a) ZZE(%’) (7)

i j<i

This measure will range between 0 to —N(N —1).

2.2 Mean Field theory

The detailed derivation of the MFT algorithm is too long to present here, so we
restrict ourselves to a short summary, and refer the reader to the Peterson and
Soéderberg paper (1989) for more details.

The first step is to introduce a temperature parameter T'. It is assumed that
there is some probability distribution

p(@) = + exp {—@} ®)

Z is a normalising factor and the probability distribution is called the Gibbs or
Boltzmann distribution. The detailed probability is of space complexity MY so
instead a mean field approximation is sought, which we denote 7(c;). This is the
“probability” that object ¢ takes on label a. There are N M such label weightings,
sometimes referred to as a soft labelling assignment. The full complexity of the
joint probability distribution has been discarded.

For a fixed temperature we can iterate the following equations which converge
to the ‘true’ value of r(a;). We compute an intermediate ‘support’ q(c;) given by

" (i) = Z > Eai, a)r™ (o) 9)

The r(«;) are then updated by

exp{g"*! (a;) /T

(n+1)(H.) —
) = S ) () /T

(10)

This system of equations is then annealed, that is the temperature T is reduced
from a high value to a low value. This aspect resembles simulated annealing.

The resemblance to a Hopfield neural network may now be seen. The support
in equation (9) is identical to the way inputs are combined in an ordinary neuron.
The r update equation (10) is a straightforward generalisation of the neuron ac-
tivation function. When there are only 2 labels this reduces to the conventional
neuron activation function, and one input/output wire may be disregarded. The
temperature corresponds to the gain parameter of a neuron.
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How is the cooling schedule chosen? In simple optimisation problems like this
one the energy defined by

Efr] =) Y r(ai)E(ai,a;)r(a)) (11)

Zj Qi,05

usually undergoes a sigmoidal transition from a high value to a low value over a
distinct range of temperatures. This corresponds to the specific heat of some spin
systems in thermodynamics. A crude cooling schedule can be chosen by starting
above this transition region and following a geometric progression until below the
region. In our case this means starting at 7' = 5 and decreasing 7' by T' — 0.8T
until 7' < 0.2

Once again we note that our method is not suited to problems with continuous
symmetries such as planes or cylinders. The reason is that the objective function
will begin to have valley like structures and the method will degrade.

Finally the labelling & needs to be processed further to produce the required
pose estimate. Our procedure is simply to choose the k objects with lowest energy.
These give us k point correspondences and we then use a conventional least-squares
fit to obtain the pose (Kanatani, 1994).

2.3 Complexity

What is the complexity of this basic method? If the label weights r are updated
over i iterations then the complexity will be O(iN2M?). To accurately represent a
complicated surface by points we need many of them - this means our complexity
is potentially very high.

If we knew only that we should optimise the energy as given by equation (11)
this may be about the best we could expect of any method to find the global opti-
mum. However we do have additional knowledge of the problem, and in almost any
optimisation problem using some additional knowledge can enhance performance.

How can we express and use this knowledge? The knowledge we have is that
the data come from some 3 dimensional space - the E(a;, ;) follow a pattern,
and are not simply random numbers. In particular many of them are zero, and it
turns out that this knowledge is the easiest to exploit.

One of the most efficient schemes for matching is geometric hashing (Lam-
dan and Wolfson, 1988). For a problem with binary invariants it has complexity
O(kN? 4+ kM?) where k is a constant depending on the density of the hash table.
In the next section we borrow some ideas from geometric hashing to dramatically
reduce the computational complexity.

3 Hash-based support

The bulk of the computational complexity comes from the computation of the
support, as given by equation (9). This involves a loop over i, a;, j, a; which is of
complexity N2M?2.

The energies E(a;, «;) are only significantly non-zero when all 4 scene invari-
ants are within a few o or u of the respective model invariants. We may exploit
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this by use of a hash table. We firstly select a few invariants to hash on, for
example the distance and one angle.

A discrete hash table is set up with bins of size about ¢ by p. Each of the
N(N — 1) model invariants are computed and (a,a’) is stored in the hash table.
This step is of order M?2.

This pre-stored hash table by now be used to compute the support. The
invariants corresponding to all scene pairs are computed and used as keys to hash
into the table. The model pairs within some preset threshold are retrieved. Then
the support ¢("*t1) (a;) is increased by adding a term

E(az, a7)r™ () (12)

Providing the threshold is chosen suitably this method of computing the support
will give an almost identical result to the previous method. However the complex-
ity reduces to O(kN?) per iteration where k is the hit rate.

In the worst case the hit rate could be k = M? and no advantage would accrue.
In the best case the hit rate is £k = 1 and traditional geometric hashing alone would
provide a good answer. Geometric hashing breaks down when the hit rate rises
to the point where no clear overall match is selected or the cost of verifying false
matches becomes too high.

The MFT version continues to work well beyond this since it is capable of
finding the globally optimum labelling in terms of the objective function. The
case of free form surface matching is within this ‘hashing breakdown zone’, since
almost every object-label match will receive many votes. It is the annealing steps
that allow a globally best match to emerge.

The overall complexity of this method is Q(ikN? 4+ M?2). Since i is about 10,
it is slower than pure geometric hashing but compared to the original O(iN2M?)
of MFT it is a vast improvement.

4 Results

We will here present a few experiments illustrating the strengths and weaknesses
of the presented approach to free-form surface matching.

The first data set we will show is the ‘foot’ surface. This model consists of
3000 polygons generated from a range data set by a deformable surface. In figure
4(a) we see the actual model. We attempt to register the foot with itself as the
first experiment. We choose 40 points on the scene and 40 points on the data.
The effects of this can be seen in figure 4(b) where we align the scene and model
and show the 40 scene and 40 model points spread randomly on the model. The
shortest point-to-point distances are typical of the best match we can expect. As
we have mentioned, the matcher is stochastic because it samples the surface at
random. The performance then should be judged by how often it gets the relative
pose close enough to start an iterative closest point algorithm. Of the 2 parameters
the translation is usually less open to question, so we use the rotation to judge
the success of the algorithm. We regard a rotation of less than 25 degrees (around
any axis) to be a success. By this criterion we get a 5 out of 10 success rate from
sampling 20 points each from the scene and model. With 40 points each we get a
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(a) (b) (c)

Figure 1: The foot dataset. (a) shows the scene and model, (b) shows 80 random
points on the foot (c) shows the resulting registration

10 out of 10 success rate. For half of these runs the rotation is accurate to within
5 degrees. In figure (c) we see a typical result.

The next example we consider is a bust of Beethoven. This consists of 5000
triangles. We match the object to itself. In figure 2(a) we show the bust and in
figure 2(b) we show a typical result.

(a)

Figure 2: The Beethoven dataset. (a) shows the scene(=model) (b) shows the
resulting registration

We now move on to consider data sets with clutter and noise, and where the
scene and model differ. The first data set is the bunny data set. This is range
data, subsampled and converted to a triangular mesh of 5000 triangles from each
view. The previous examples are in cases where the normal is corrupted by the
random sampling process, but in this case there is additional sensor noise. The
sensor noise will primarily affect the normals computed from the triangles because
they depend on a derivative.

Figure 4(a) and 4(b) show the scene and model that we match. In figure 4(c)
we show the match achieved. The success rate is 9 out of 10.

In the next examples we consider rather more complicated objects. In figure 4
(a) we present the cow model consisting of 6000 triangles. In figure 4 (b) we show
a successful match. We used 100 points on the scene and model. The success rate
is 4 out of 10. The main problem here is that there is an approximate symmetry
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Data. Set, N M | Success Rate
foot 20 | 20 5/10
foot 40 | 40 10/10
Beethoven | 40 | 40 7/10
Bunny 40 | 40 9/10
Cow 100 | 100 4/10
Soldier 120 | 120 7/10

Table 1: Summary of results

Figure 3: The bunny dataset. (a) shows the scene and (b) shows the model, (c)
shows the resulting registration

when the cow faces backwards. The largest piece of surface is the stomach, and
this matches quite well between these two positions. We believe that this problem
can be overcome by focusing more points on the areas of the surface with high
curvature but small area. When it does achieve a match the accuracy of the
alignment is quite good and in the example shown the accuracy is better than 2
degrees. The worst error is 5 degrees. The final dataset that we will consider is
the soldier. This consists of two overlapping views of a toy soldier each consisting
of about 20000 triangles. In figure 4(a) and (b) we show a reconstruction of the
entire soldier performed from several views by (Hilton et al., 1996). In figures (c)
and (d) we show two overlapping views of the soldier that we will try and match.
In figure (e) we show one of the matches with accuracy of about 3 degrees. The
mismatch is visible when comparing the helmet with figure (f). When run with
80 points in both scene and model we achieved a 4 out of 10 success rate, using
a threshold of 14 degrees to define success. The rate rose to 7 out of 10 when
N = M = 120. All seven lie within 14 degrees of the correct result and 4 lie
within 5 degrees.

The algorithm was coded in C++ and run on a Sun workstation. The execution
time for a 40x40 point match is 20 seconds and for a 80x80 run it is 90 seconds.
The approximate dependence on N2 may be noted.
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(a) (b)

Figure 4: The cow dataset. (a) shows the scene and (b) shows the resulting
registration

5 Discussion

We have in this paper presented a simple approach for finding the initial guess for
the free-form matching problem. We presented promising results for several data
sets. The algorithm is based on a powerful optimisation technique from mean field
theory.

The basic steps of the algorithm are as follows. The scene and model sur-
faces are randomly sampled. Using binary invariants this is formulated as a point
matching problem and optimised using mean field theory. High scoring points are
used to compute the required transformation. The basic algorithm has the same
architecture as a recurrent neural network. Since mean field theory has a anneal-
ing schedule it is an approximate global optimiser, unlike gradient descent type
methods.

The basic algorithm is of complexity A% where A is the area of the scene and
model. We present an algorithmic shortcut that can reduce the complexity to a
similar complexity to Geometric Hashing, i.e. of order nearly A. There need be
no drop in performance relative to the full MFT theory.

This algorithm is unusual in that it does not use any second derivative infor-
mation. This gives it wide applicability and could be seen as a major advantage.

On the other hand we we believe that there is considerable scope for refinement
of the algorithm. In particular if we begin to incorporate curvature information,
either as a unary cost or as a selective surface sampling technique we expect
major improvements in performance. This is because the use of curvature would
supplement an already viable method, rather than being a intrinsic component of
the method.

Finally we would like to acknowledge the sources of the data. The foot model
is based on Cyberware data supplied by Tim McInerney, using the Slime package.
The Beethoven and the Cow models were produced by Viewpoint Animation using
a mechanical digitiser. The bunny dataset was used by Turk and Levoy in their
zipper paper. The soldier data set was used by Soucy and Laurendau and collected
by M. Rioux of the National Research Council of Canada.
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Figure 5: The soldier dataset. (a) and (b) show views of the reconstructed soldier.
(c) and (d) show two views that we use as scene and model. (e) shows the resulting
registration and (f) shows the exact registration
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