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Abstract

Visual servoing is a process to enable a robot to position a camera
with respect to known landmarks using the visual data obtained by the
camera itself to guide camera motion. A solution is described which
requires very little a prior: information freeing it from being specific to
a particular configuration of robot and camera. The solution is based
on closed loop control together with deliberate perturbations of the
trajectory to provide calibration movements for refining that trajec-
tory. Results from experiments in simulation and on a physical robot
arm (camera-in-hand configuration) are presented.

1 Introduction

Visual servoing is a process by which the appearance of landmarks is used to control
the positioning of the camera with respect to the world. The camera is thus the
sensor for a control scheme, in which the position of the camera itself is the object
of control. The objective is for a robot to position the camera in a specific ‘target’
pose (defined at initialisation) with respect to one or more landmarks. The robot
commences servoing at a ‘start’ location from which these landmarks are visible.

Visual servoing is potentially useful for situations where a robot must orientate
itself with respect to the world; for navigation purposes with a mobile robot, and
for grasping and insertion operations with a robot arm. Several applications for
tracking or grasping moving objects are described in the literature [1] but only
application to static targets i1s considered here.

2 Previous Work

Visual servoing techniques are classified in terms of the parameters supplied to the
control strategy [1, 2]. Tmage-based control is exercised in response to the image
features directly. Position-based control is exercised in response the estimated
pose of the camera which is recovered from the image features (figure 1).
Image-based control simplifies the process significantly and is thus commonly
used (e.g. [3, 4,5, 6,7, 8]). By defining an error signal in terms of image features
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Figure 1: Standard Visual Servoing Methods (a) Position-Based, (b) Image-Based

a control law can be defined, e.g. [6] uses:

85(1) = — (LT (QL() + R) ™ LT ()Q (x(1) = Xrargee(t + 1)) (1)
where: (55 is the required change in camera pose,

Q and R are control weighting matrices,

L is the interaction matrix,

x is the image coordinates of landmark points,

Xtarget 15 the desired image coordinates of landmark points.

Essentially this control law uses a matrix L, called the interaction matrix,
to relate the error in image coordinates of landmark points, x, to the required
change in camera pose, 5 Some inverse kinematics is then required to convert
this required change in pose into actuator commands.

The interaction matrix is pose specific. It is often predefined for a particular
pose and type of landmark (such as plane surfaces, cylinders, points, etc.), or is
extracted from deliberate movements of the camera. Once defined the interaction
matrix can be kept constant if the start location is close to the target location
(in which case repeated application will converge to the target). Alternatively
the interaction matrix is updated as the camera moves by approximating how
the change in pose will affect the interaction matrix [4, 6, 7] (which requires the
recovery of some 3D structure).

3 Proposed Method

Image-based visual servoing is preferable since it is faster, simpler, and offers
the possibility of significant implementation non-specificity compared to position-
based methods. However, most current visual servoing methods do not take ad-
vantage of the possibility to extract the relation between image features and robot
motion at run-time and instead pre-define the interaction matrix for particular
landmarks and use robot specific kinematics to achieve the desired change in pose.
The aim of this work was to develop a visual servoing technique free from such
implementation specific details.
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More generally than in the previous section an interaction matrix can be defined
to relate visual appearance, &, directly to motor actions, &:
o0& = Lda (2)
This is an image-motor rather than an image-pose interaction matrix as is used
in equation 1. It results in the simplified visual servoing scheme shown in figure 2
and described below.

Target C Joint
‘ Appearance ‘ L Controllers fonot
Feature
1
Extraction

Figure 2: Proposed Visual Servoing Method
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3.1 Image Features

If it is assumed that the viewing geometry is such that the formation of the image
of a landmark can be modelled by weak perspective [9], then two images of a
planar surface, 'x (at pose 1) and 2x (at pose 2), can be related by an affine

transformation:
’x = %A Ix

Where ?A is the matrix of the affine transformation from pose 1 to pose 2. The
parameters of the affine transformation can be converted into the differential in-
variants of the image displacement or velocity field [10]:

ZA:l ( divv +defiv+1 defsv—curlv 1, )
1 2 defov+curlv  divv —defiv+1 1,

Which are used in preference to the affine parameters as they are related to the
scene structure in a more intuitive manner: divv is the divergence or scale change,
curlv is the curl or image plane rotation, and def;v and def;v are the two com-
ponents of deformation or pure shear. A vector can thus be derived to represent
the change in image appearance from pose 1 to pose 2:

%(D’ = ( divv  curlv defiv defov tp iy )T. Each landmark contour thus
provides 6 parameters for the required change in image appearance to control the
pose of the camera in 6 degree of freedom (d.o.f.) space. Planar landmarks have
been chosen since they are common, easy to find, and sufficient information can
be extracted without any requirement to match corresponding points (see section
4) or to know the contour shape.

Under weak perspective there is a pose ambiguity such that two distinct poses
share the same visual appearance. This is due to there being no depth information
to distinguish which points on the contour are furthest from the camera: Consider
a hemisphere centred on the camera such that each point on the the surface of
the hemisphere defines the landmark position and orientation then points at equal
depth but on opposite sides of the hemisphere will define views sharing the same
visual appearance under weak perspective.

3.2 Algorithm

With the definition given in equation 2, the interaction matrix becomes robot as
well as pose specific, as it includes a local approximation of the inverse kinematics.
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The image-motor Jacobian, is a local, linear approximation, to this interaction
matrix. It can be estimated by measuring the change in visual appearance during
deliberate movements of the robot along each of its d.o.f.s:
turb
Awr Gammerter) = (et
Lij ~ AOZJ' = (currentaj) _ (perturbaj)
for 1 < i < 6n (where n is the number of landmarks),
and 1 < j < m (where m is the number robot actuators),
where Ad is the measured change in image appearance,
Ada is the change in robot actuator states.

Having performed these calibration movements the required motion can be calcu-
lated from the (pseudo-)inverse, L, of L:

A& L [(5re ) — (fangeid)] = LY (arer'a)

It is possible to reduce the number of calibration movements required by using
fixation. The motion axes which achieve fixation do not then need to be included
in the Jacobian. Despite the reduction in the number of calibration movements
thus achieved updating the interaction matrix as pose changes is costly and in
some applications could interfere with the task. Motion towards the target would
also be fitful and inelegant. Avoiding separate calibration phases entirely would
seem to be desirable. Updating the image-motor interaction matrix analytically
i1s more difficult than with an image-pose interaction matrix and the knowledge
of object pose and robot kinematics that would be required to achieve this would
defeat the aims of this research. Some information about the required modification
to the interaction matrix can be obtained by comparing the measured change in
appearance after each motion with that predicted by equation 2 [11], but the
refinement thus produced can be only approximate since the error along a single
trajectory is measured while the robot will have more than one degree of freedom.

The algorithm proposed here does integrate the calibration movements with
the motion towards the target, to form a continuous trajectory. As the camera
moves the change in appearance of the landmarks is measured. The motion is
then perturbed by a deliberate change in speed of one axis and the effect this has
on the appearance of the landmarks, in comparison with the effect expected from
the previous (unperturbed) trajectory is used to calculate a Jacobian, Lj, for this
motion axis, j, individually:

current, . perturb previous, current, ,.
Li Aw; |:<ta7'get wl) - (target wl)i| - |:(ta7'get wl) - (target wl):|
J; ~ =
. current ~ .y __ erturb ., .
Aq; ( aj) — (Pertirbay)

for 1 < i < 6n (where n is the number of landmarks).

Hence, an estimate is made of the required motion along this axis:

reqd *+ [current —
Aozj ~ Lj (twget w)

and this estimate is used to update the trajectory. The process i1s then be repeated
for each robot motion axis in turn. And the entire cycle iterated until the target
appearance 1s achieved.

The continuous motion of the camera envisioned in the above description has
in practice been implemented with the movements split into discrete steps. The
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maximum permissible movement each iteration is limited to attempt to approxi-
mate closed-loop control, and since the Jacobians are only locally valid (and are
also only approximate). Such limits can be set adaptively: If the landmarks are
stationary a large change in appearance when making a perturbation indicates
that motion should be slowed along that axis, while a small change in appearance
indicates that the limit on movement should be increased.

4 Implementation

The algorithm described was developed and tested in simulation (using Matlab)
and with a physical robot arm (a Scorbot ER-VII) with a CCD camera mounted
in the end-effector. Both setups used monocular vision. Only static control is
considered; dynamics are ignored in the simulations and a separate dedicated
robot controller executes the positioning commands sent to the physical robot.

The simulation enables the camera to move with 6 d.o.f.s. The simulation
places no restrictions on valid poses unlike a physical robot arm which can only
reach certain configurations. Also, each motion axis is aligned with a camera axis.
The type of robot simulated is thus similar in configuration to a flying insect such
as a bee. It provides an experiment of navigation for a mobile robot rather than
a simulation of the robot arm. Landmarks are defined as coplanar points, which
are matched (perfectly) across images, and imaged under perspective projection.
The camera field of view is not bounded and hence there are no problems with
landmarks being lost from view.

The robot arm had 5 d.o.f.s. The dedicated robot controller allowed control in
terms of both cartesian coordinates and joint angles. The pose of the robot affects
the camera motion induced by a particular motion axis in both cases. In the
simulations the affine transformations were calculated via the image coordinates
of corresponding landmark points. Such distinguished points are rarely available
in real images. However, the affine transformation can be estimated from circular
moments of corresponding contours [12] (this estimate is only accurate for small
image distortions but has proved sufficiently correct for use here despite the large
differences in camera pose). Such a method was implemented on B-splines fitted
to the landmark contours. Active B-spline contours, or snakes [13], constrained
to deform affinely, were used for tracking the landmarks on the image [10]. This
method, although not requiring point correspondences, does still require contour
correspondences. Affine invariant signatures can be used for contour matching
[14], but have not been included in this implementation.

Fixation is easily achieved with the simulated robot where motion axes are
aligned to provide pure rotations about the image plane x and y axes and the
required angle of rotation is purely a function of the image position of the fixa-
tion point. For the robot arm fixation is not such a simple task as the camera
motions induced by robot axes change with pose. However, the wrist roll axis
(that nearest to the end-effector) induces image motion along the x-axis while the
wrist pitch joint (the next nearest to the end-effector) induces image motion along
the x-axis and/or the y-axis dependent on pose. By measuring, in the image, the
movement of the fixation point induced by these axes the required rotations can
be approximated and fixation achieved after a few iterations.
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5 Results

Figure 3 shows some examples of the trajectories achieved using the method de-
scribed above in simulation, using a single landmark, with and without fixation
(i.e. to control 4 or 6 d.o.f.s). The trajectories generated without fixation are less
direct than those achieved with fixation. Without fixation translational motions
are sometimes used to attempt to correct errors caused by incorrect orientation.
Such problems do not occur when fixation is used as the best orientation is always
achieved before the translational motion is calculated. The initial trajectory for
each experiment was along the optical axis in a sense determined by divv (the
1sotropic expansion or contraction of the contour which provides an indication of
whether the camera needs to move towards or away from the landmark).
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Figure 3: Examples of camera movement achieved in simulation (a) without fix-
ation movements (b) with fixation movements. The optical centre of the camera
is marked with a ‘+” and its direction of view is the direction of the line. Target

pose is at coordinates (0,0,-10), marked with a ‘o’, facing vertically

The robot does not have an axis of motion which will always produce camera
translation along the optical axes, but the algorithm will work for any random
initial movement; it will just be slower to reach the target. With all experiments
using the robot fixation was performed at each step, since unlike in the simulation
the camera field of view is bounded and fixation is useful to prevent losing sight
of the landmarks. The robot has successfully servoed using one, two and three
landmark contours using both joint and cartesian control of the robot. Results are
shown in figures 4 and 5.

The algorithm is essentially an optimisation to null the affine transformation
using gradient descent. Iteratively calculating the full Jacobian also provides a
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Figure 4: Result from an experiment using a 5 d.o.f. robot arm with the camera
in the end-effector servoing using one landmark contour. The configuration of the
robot is shown at (a) the target position, (b) the start position, and (c) the position
achieved after 10 iterations of the algorithm (the path taken is drawn with numbers
indicating camera position at each iteration). (d) compares the landmark contour
appearances at each of these configurations. The change in the positioning error
with time is shown in terms of (e) the difference between the target robot joint
angles and those at each iteration, and (f) the change in the parameters for the
required change in image appearance. The direct path translation of the camera
between start and target locations was approximately 450mm, and the longest
dimension of the landmark is 126mm.
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Figure 5: Further results from experiments using the 5 d.o.f. robot arm using (a)
one landmark contour, and (b) two landmark contours. The number of iterations of
the algorithm used to generate these results was (a) b iterations, (b) 24 iterations.
The direct path translation of the camera between start and target locations was
approximately (a) 500mm, (b) 250mm, and the longest dimension of each block is
approximately 100mm.

gradient descent method but one where the trajectory along the steepest gradient
is found. Figure 6 is a plan view of the situation depicted in figure 3 to illustrate
the trajectories calculated throughout the volume in which visual servoing takes
place. The algorithm will succeed if the trajectories predicted always reduce the
affine parameters, without becoming stuck in a local minima where no further
gradient descent can occur but which is not at the target. The pose ambiguity
under weak perspective (section 3.1) is such a local minima, however, under full
perspective the pose ambiguity does not exist. The artifacts introduced into the
affine parameters by perspective effects are small but near the pose ambiguity
become dominant inducing large erroneous movements to be predicted (figure 6
(a)). The pose ambiguity is thus a repeller rather than a local minimum under full
perspective. The pose ambiguity is removed if a second non-coplanar landmark
is available (figure 6 (b)). More than one landmark is thus desirable not only to
increase the information available but to suppress erroneous movements caused
near the pose ambiguity. For the robot implementation affine contour tracking is
used causing the effective camera model to be closer to weak perspective, but no
local minimum has been found in practice when servoing on a single contour.

6 Discussion

This paper has presented a novel, and yet very simple, algorithm for visual servo-
ing. By constraining the type of landmarks used to be planar contours a method
has been developed which requires no a priori information about the landmark
geometry or robot configuration, and does not require distinguished points, the
recovery of any 3D structure, proprioceptive measurements, nor a kinematic model
of the robot, all of which represent improvements over previous methods. Instead
all necessary information is extracted at run-time. The inelegance of separate cal-
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Figure 6: The x and y components of movements calculated from each point
marked with ‘x’ for 3 depths in the z-axis (each line points in the direction and has
a length proportional to the magnitude of the movement). The movements were
estimated using the full Jacobian for (a) one landmark, and (b) two landmarks.
The target location is at (0,0) so ideally all movement vectors should point towards
the centre. The first landmark has a pose ambiguity under weak perspective in the
lower right quadrant, the second landmark introduced in (b) has a pose ambiguity
under weak perspective in the upper left quadrant.

=

ibration movements 1s avoided by using a closed-loop control scheme relying on
perturbations of the trajectory to update the estimate of the required trajectory.

The lack of a priori knowledge required about the camera/robot system makes
this algorithm very general as has been demonstrated by its application to two
entirely different robot morphologies. A reduction in the number of controlled axes,
and an increase in performance, is achieved by implementing fixation movements
at the expense of making the method more robot specific. Further improvement
in performance gained from robot specific knowledge comes from identifying an
axis of motion which can induce motion along the camera optical axis.

The method has been developed to apply to the situation where the target
location is not close to the start location, and hence when a single interaction
matrix is not sufficient. Although only static targets have been considered the
algorithm has been slightly extended, and tested in simulation, to servo relative
to targets in motion.

The method can be slow and seldom provides a direct path to the target loca-
tion. Some improvement to the method might be achieved if more tightly closed-
loop control was exercised. Ideally the image processing to calculate the Jacobian,
would be performed while the robot was moving, enabling continuous updating of
the estimated trajectory (alternatively smaller steps could be taken). This would
avoid jerky motion, produce finer control, and enable trajectory errors to be cor-
rected earlier. However, large movement steps are need to increase signal-to-noise
ratio because snake tracking and the calculation of the affine transformation are
inexact when using real image data.
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