
Uncalibrated Visual ServoingMike Spratling Roberto CipollaDepartment of Engineering,University of Cambridge,Cambridge. CB2 1PZ.mws20@eng.cam.ac.uk cipolla@eng.cam.ac.ukAbstractVisual servoing is a process to enable a robot to position a camerawith respect to known landmarks using the visual data obtained by thecamera itself to guide camera motion. A solution is described whichrequires very little a priori information freeing it from being speci�c toa particular con�guration of robot and camera. The solution is basedon closed loop control together with deliberate perturbations of thetrajectory to provide calibration movements for re�ning that trajec-tory. Results from experiments in simulation and on a physical robotarm (camera-in-hand con�guration) are presented.1 IntroductionVisual servoing is a process by which the appearance of landmarks is used to controlthe positioning of the camera with respect to the world. The camera is thus thesensor for a control scheme, in which the position of the camera itself is the objectof control. The objective is for a robot to position the camera in a speci�c `target'pose (de�ned at initialisation) with respect to one or more landmarks. The robotcommences servoing at a `start' location from which these landmarks are visible.Visual servoing is potentially useful for situations where a robot must orientateitself with respect to the world; for navigation purposes with a mobile robot, andfor grasping and insertion operations with a robot arm. Several applications fortracking or grasping moving objects are described in the literature [1] but onlyapplication to static targets is considered here.2 Previous WorkVisual servoing techniques are classi�ed in terms of the parameters supplied to thecontrol strategy [1, 2]. Image-based control is exercised in response to the imagefeatures directly. Position-based control is exercised in response the estimatedpose of the camera which is recovered from the image features (�gure 1).Image-based control simpli�es the process signi�cantly and is thus commonlyused (e.g. [3, 4, 5, 6, 7, 8]). By de�ning an error signal in terms of image features
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TargetFigure 1: Standard Visual Servoing Methods (a) Position-Based, (b) Image-Baseda control law can be de�ned, e.g. [6] uses:�~�(t) = � �LT (t)QL(t) +R��1 LT (t)Q (x(t)� xtarget(t + 1)) (1)where: �~� is the required change in camera pose,Q and R are control weighting matrices,L is the interaction matrix,x is the image coordinates of landmark points,xtarget is the desired image coordinates of landmark points.Essentially this control law uses a matrix L, called the interaction matrix,to relate the error in image coordinates of landmark points, x, to the requiredchange in camera pose, ~�. Some inverse kinematics is then required to convertthis required change in pose into actuator commands.The interaction matrix is pose speci�c. It is often prede�ned for a particularpose and type of landmark (such as plane surfaces, cylinders, points, etc.), or isextracted from deliberate movements of the camera. Once de�ned the interactionmatrix can be kept constant if the start location is close to the target location(in which case repeated application will converge to the target). Alternativelythe interaction matrix is updated as the camera moves by approximating howthe change in pose will a�ect the interaction matrix [4, 6, 7] (which requires therecovery of some 3D structure).3 Proposed MethodImage-based visual servoing is preferable since it is faster, simpler, and o�ersthe possibility of signi�cant implementation non-speci�city compared to position-based methods. However, most current visual servoing methods do not take ad-vantage of the possibility to extract the relation between image features and robotmotion at run-time and instead pre-de�ne the interaction matrix for particularlandmarks and use robot speci�c kinematics to achieve the desired change in pose.The aim of this work was to develop a visual servoing technique free from suchimplementation speci�c details.



British Machine Vision ConferenceMore generally than in the previous section an interaction matrix can be de�nedto relate visual appearance, ~!, directly to motor actions, ~�:�~! = L�~� (2)This is an image-motor rather than an image-pose interaction matrix as is usedin equation 1. It results in the simpli�ed visual servoing scheme shown in �gure 2and described below.
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RobotControl LawFigure 2: Proposed Visual Servoing Method3.1 Image FeaturesIf it is assumed that the viewing geometry is such that the formation of the imageof a landmark can be modelled by weak perspective [9], then two images of aplanar surface, 1x (at pose 1) and 2x (at pose 2), can be related by an a�netransformation: 2x = 21A 1xWhere 21A is the matrix of the a�ne transformation from pose 1 to pose 2. Theparameters of the a�ne transformation can be converted into the di�erential in-variants of the image displacement or velocity �eld [10]:21A = 12 � divv + def1v + 1 def2v � curlv txdef2v + curlv divv � def1v + 1 ty �Which are used in preference to the a�ne parameters as they are related to thescene structure in a more intuitive manner: divv is the divergence or scale change,curlv is the curl or image plane rotation, and def1v and def2v are the two com-ponents of deformation or pure shear. A vector can thus be derived to representthe change in image appearance from pose 1 to pose 2:21~! = � divv curlv def1v def2v tx ty �T . Each landmark contour thusprovides 6 parameters for the required change in image appearance to control thepose of the camera in 6 degree of freedom (d.o.f.) space. Planar landmarks havebeen chosen since they are common, easy to �nd, and su�cient information canbe extracted without any requirement to match corresponding points (see section4) or to know the contour shape.Under weak perspective there is a pose ambiguity such that two distinct posesshare the same visual appearance. This is due to there being no depth informationto distinguish which points on the contour are furthest from the camera: Considera hemisphere centred on the camera such that each point on the the surface ofthe hemisphere de�nes the landmark position and orientation then points at equaldepth but on opposite sides of the hemisphere will de�ne views sharing the samevisual appearance under weak perspective.3.2 AlgorithmWith the de�nition given in equation 2, the interaction matrix becomes robot aswell as pose speci�c, as it includes a local approximation of the inverse kinematics.



British Machine Vision ConferenceThe image-motor Jacobian, is a local, linear approximation, to this interactionmatrix. It can be estimated by measuring the change in visual appearance duringdeliberate movements of the robot along each of its d.o.f.s:Lij � �!i��j = �currenttarget !i� � �perturbtarget !i�(current�j)� (perturb�j)for 1 < i < 6n (where n is the number of landmarks),and 1 < j < m (where m is the number robot actuators),where �~! is the measured change in image appearance,�~� is the change in robot actuator states.Having performed these calibration movements the required motion can be calcu-lated from the (pseudo-)inverse, L+, of L:�~�reqd � L+ ��currenttarget ~!� � �targettarget~!�� = L+ �currenttarget ~!�It is possible to reduce the number of calibration movements required by using�xation. The motion axes which achieve �xation do not then need to be includedin the Jacobian. Despite the reduction in the number of calibration movementsthus achieved updating the interaction matrix as pose changes is costly and insome applications could interfere with the task. Motion towards the target wouldalso be �tful and inelegant. Avoiding separate calibration phases entirely wouldseem to be desirable. Updating the image-motor interaction matrix analyticallyis more di�cult than with an image-pose interaction matrix and the knowledgeof object pose and robot kinematics that would be required to achieve this woulddefeat the aims of this research. Some information about the required modi�cationto the interaction matrix can be obtained by comparing the measured change inappearance after each motion with that predicted by equation 2 [11], but there�nement thus produced can be only approximate since the error along a singletrajectory is measured while the robot will have more than one degree of freedom.The algorithm proposed here does integrate the calibration movements withthe motion towards the target, to form a continuous trajectory. As the cameramoves the change in appearance of the landmarks is measured. The motion isthen perturbed by a deliberate change in speed of one axis and the e�ect this hason the appearance of the landmarks, in comparison with the e�ect expected fromthe previous (unperturbed) trajectory is used to calculate a Jacobian, Lj, for thismotion axis, j, individually:Lji � �!i��j = h�currenttarget !i�� �perturbtarget !i�i� h�previoustarget !i�� �currenttarget !i�i(current�j)� (perturb�j)for 1 < i < 6n (where n is the number of landmarks).Hence, an estimate is made of the required motion along this axis:��reqdj � Lj+ �currenttarget ~!�and this estimate is used to update the trajectory. The process is then be repeatedfor each robot motion axis in turn. And the entire cycle iterated until the targetappearance is achieved.The continuous motion of the camera envisioned in the above description hasin practice been implemented with the movements split into discrete steps. The



British Machine Vision Conferencemaximum permissible movement each iteration is limited to attempt to approxi-mate closed-loop control, and since the Jacobians are only locally valid (and arealso only approximate). Such limits can be set adaptively: If the landmarks arestationary a large change in appearance when making a perturbation indicatesthat motion should be slowed along that axis, while a small change in appearanceindicates that the limit on movement should be increased.4 ImplementationThe algorithm described was developed and tested in simulation (using Matlab)and with a physical robot arm (a Scorbot ER-VII) with a CCD camera mountedin the end-e�ector. Both setups used monocular vision. Only static control isconsidered; dynamics are ignored in the simulations and a separate dedicatedrobot controller executes the positioning commands sent to the physical robot.The simulation enables the camera to move with 6 d.o.f.s. The simulationplaces no restrictions on valid poses unlike a physical robot arm which can onlyreach certain con�gurations. Also, each motion axis is aligned with a camera axis.The type of robot simulated is thus similar in con�guration to a 
ying insect suchas a bee. It provides an experiment of navigation for a mobile robot rather thana simulation of the robot arm. Landmarks are de�ned as coplanar points, whichare matched (perfectly) across images, and imaged under perspective projection.The camera �eld of view is not bounded and hence there are no problems withlandmarks being lost from view.The robot arm had 5 d.o.f.s. The dedicated robot controller allowed control interms of both cartesian coordinates and joint angles. The pose of the robot a�ectsthe camera motion induced by a particular motion axis in both cases. In thesimulations the a�ne transformations were calculated via the image coordinatesof corresponding landmark points. Such distinguished points are rarely availablein real images. However, the a�ne transformation can be estimated from circularmoments of corresponding contours [12] (this estimate is only accurate for smallimage distortions but has proved su�ciently correct for use here despite the largedi�erences in camera pose). Such a method was implemented on B-splines �ttedto the landmark contours. Active B-spline contours, or snakes [13], constrainedto deform a�nely, were used for tracking the landmarks on the image [10]. Thismethod, although not requiring point correspondences, does still require contourcorrespondences. A�ne invariant signatures can be used for contour matching[14], but have not been included in this implementation.Fixation is easily achieved with the simulated robot where motion axes arealigned to provide pure rotations about the image plane x and y axes and therequired angle of rotation is purely a function of the image position of the �xa-tion point. For the robot arm �xation is not such a simple task as the cameramotions induced by robot axes change with pose. However, the wrist roll axis(that nearest to the end-e�ector) induces image motion along the x-axis while thewrist pitch joint (the next nearest to the end-e�ector) induces image motion alongthe x-axis and/or the y-axis dependent on pose. By measuring, in the image, themovement of the �xation point induced by these axes the required rotations canbe approximated and �xation achieved after a few iterations.



British Machine Vision Conference5 ResultsFigure 3 shows some examples of the trajectories achieved using the method de-scribed above in simulation, using a single landmark, with and without �xation(i.e. to control 4 or 6 d.o.f.s). The trajectories generated without �xation are lessdirect than those achieved with �xation. Without �xation translational motionsare sometimes used to attempt to correct errors caused by incorrect orientation.Such problems do not occur when �xation is used as the best orientation is alwaysachieved before the translational motion is calculated. The initial trajectory foreach experiment was along the optical axis in a sense determined by divv (theisotropic expansion or contraction of the contour which provides an indication ofwhether the camera needs to move towards or away from the landmark).
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Landmarks(b)Figure 3: Examples of camera movement achieved in simulation (a) without �x-ation movements (b) with �xation movements. The optical centre of the camerais marked with a `�' and its direction of view is the direction of the line. Targetpose is at coordinates (0,0,-10), marked with a `o', facing verticallyThe robot does not have an axis of motion which will always produce cameratranslation along the optical axes, but the algorithm will work for any randominitial movement; it will just be slower to reach the target. With all experimentsusing the robot �xation was performed at each step, since unlike in the simulationthe camera �eld of view is bounded and �xation is useful to prevent losing sightof the landmarks. The robot has successfully servoed using one, two and threelandmark contours using both joint and cartesian control of the robot. Results areshown in �gures 4 and 5.The algorithm is essentially an optimisation to null the a�ne transformationusing gradient descent. Iteratively calculating the full Jacobian also provides a
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2(e) Change in Robot Position Error (f) Change in Image Appearance ErrorFigure 4: Result from an experiment using a 5 d.o.f. robot arm with the camerain the end-e�ector servoing using one landmark contour. The con�guration of therobot is shown at (a) the target position, (b) the start position, and (c) the positionachieved after 10 iterations of the algorithm (the path taken is drawn with numbersindicating camera position at each iteration). (d) compares the landmark contourappearances at each of these con�gurations. The change in the positioning errorwith time is shown in terms of (e) the di�erence between the target robot jointangles and those at each iteration, and (f) the change in the parameters for therequired change in image appearance. The direct path translation of the camerabetween start and target locations was approximately 450mm, and the longestdimension of the landmark is 126mm.



British Machine Vision Conference
Initial landmark contour

Achieved landmark contour

Target

contour
landmark

Initial

contourTarget landmark 
contour

contour
landmark

Achieved landmark

(a) (b)Figure 5: Further results from experiments using the 5 d.o.f. robot arm using (a)one landmark contour, and (b) two landmark contours. The number of iterations ofthe algorithm used to generate these results was (a) 5 iterations, (b) 24 iterations.The direct path translation of the camera between start and target locations wasapproximately (a) 500mm, (b) 250mm, and the longest dimension of each block isapproximately 100mm.gradient descent method but one where the trajectory along the steepest gradientis found. Figure 6 is a plan view of the situation depicted in �gure 3 to illustratethe trajectories calculated throughout the volume in which visual servoing takesplace. The algorithm will succeed if the trajectories predicted always reduce thea�ne parameters, without becoming stuck in a local minima where no furthergradient descent can occur but which is not at the target. The pose ambiguityunder weak perspective (section 3.1) is such a local minima, however, under fullperspective the pose ambiguity does not exist. The artifacts introduced into thea�ne parameters by perspective e�ects are small but near the pose ambiguitybecome dominant inducing large erroneous movements to be predicted (�gure 6(a)). The pose ambiguity is thus a repeller rather than a local minimumunder fullperspective. The pose ambiguity is removed if a second non-coplanar landmarkis available (�gure 6 (b)). More than one landmark is thus desirable not only toincrease the information available but to suppress erroneous movements causednear the pose ambiguity. For the robot implementation a�ne contour tracking isused causing the e�ective camera model to be closer to weak perspective, but nolocal minimum has been found in practice when servoing on a single contour.6 DiscussionThis paper has presented a novel, and yet very simple, algorithm for visual servo-ing. By constraining the type of landmarks used to be planar contours a methodhas been developed which requires no a priori information about the landmarkgeometry or robot con�guration, and does not require distinguished points, therecovery of any 3D structure, proprioceptive measurements, nor a kinematic modelof the robot, all of which represent improvements over previous methods. Insteadall necessary information is extracted at run-time. The inelegance of separate cal-
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