
A Model-Driven Stereo CorrespondenceAlgorithm Using Dynamic ProgrammingY. Shao J. E. W. MayhewAIVRU, The Univeristy of She�eld, She�eld S10 2TP, UKemail: yuan,mayhew@aivru.shef.ac.ukAbstractWe describe an edge-based stereo correspondence algorithm in themodel-driven vision system. A constraint derived from the 3D modelis used to prune false alarms and speed up the matching process. Thisconstraint is based on computional considerations and experimentaland psychological observations concerning vertical disparities. An edgeconstraint is also presented. A numbering scheme is used to facilitatethe implementation of the correspondence algorithm using dynamicprogramming. Experiments on natural images show that the corre-spondence of an edge can usually be achieved in a few seconds. Thecomputed disparities are further incorporated into object model to re-�ne the estimates of object pose.Keywords: Correspondence, Constraints, Cost function, Model-driven vision,Dynamic programming1 IntroductionThe work reported here is a part of an ongoing research project \model-drivenstereo vision under variable camera geometry", as shown in Figure 1. Three ma-jor stages can be identi�ed: stage 1 uses simple grey-level image processing and2D templates of 3D object models embedded in a Bayesian statistical reasoningarchitecture to provide an object localisation system. The outputs of this stage areestimates of the object position and pose; in stage 2, a stereo matching algorithmcomputes the disparities of object templates. It uses the priming preliminary esti-mates of object pose from the previous stage to facilitate matching. The outputsof this stage are disparities of object template. Details of this stage will be de-scribed in this paper; stage 3 uses an object motion model, disparity informationfrom stage 2, and a smoothing �lter to track and foveate the object.The object used in this research is a Toyota component. Three focus features,corresponding to \bosses" on the part are chosen. Each focus feature consists oftwo nearly concentric circles and their centre. We use 2D template to representthe projection of the 3D focus features onto image planes. Each template thusconsists of two elliptical edge segments and a circular feature, i.e. a blob.Mapping two 2D images into 3D disparity space is an ill-posed problem. Soconstraints, derived from a priori assumptions about the scene structure and the
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Stage 2Figure 1: Model-driven stereo vision under variable camera geometrycamera geometry, are used to make the problem solvable. Widely used constraintsare uniqueness [11], continuity [12][9], smoothness [1][5] and the disparity gradi-ent [13]. To deal with the salient features in a scene, i.e. the discontinuitiesin depth at boundaries of objects, the discontinuities in surface orientation, andsteeply sloping surfaces, Belhumeur [2] suggested a stereo algorithm should inter-nally maintain a detailed map of scene geometry. In his algorithm [3] depth andoccluding countours are explicitly represented. Geiger [8] dealt with occlusion byimposing an occlusion constraint, which suspends the smoothness constraint at theboundraies of objects explicitly. Despite the progress made on generic solutions tocorrespondence process, we suggest that including further constraints derived fromthe application domain could be used to improve the performance of the matchingalgorithm. In this paper we use prior knowledge about the scene or objects toprune false alarms and quicken matching. In our model-driven vision [16], theprior knowledge about the scene is encoded in a (weak) model.Computationally, the solution of the correspondence problem minimises a costfunction incorporating constraints. Geiger [7] used dynamic programming (DP) to



British Machine Vision Conferenceaddress this problem. His algorithmbased on DP was basically a 1D process, eitheralong epipolar line or along a given edge. In this paper we propose a numberingscheme to serve representation of the correspondence search space. This schemeallows an intrinsically 1D algorithm (DP) to work in a 2D problem space, i.e. bothalong epipolar line and along edge features.The stereo correspondence algorithm takes an object model, (weakly) cali-brated camera geometry, focused 2D template and edges as input. After minimiz-ing a cost function under constraints using dynamic programming, it outputs thedisparities of an edge template.2 NotationLet's denote eli(eri ) to edges in left (right) images. And let plmn(prmn) be pointslying on the edge elm(erm). Then the question becomes, for points plij , for all j, onany edge eli, to compute their correspondences with primitives in the right image.We adopt in this paper matching process M , as used in [8], and extend it into3 dimension numbering scheme. M is de�ned asM (j;m; n) = � 1; if prmn matches plij;0; else:Now we de�ne an ordering function X as X(plij) = j; and X(prmn) = n: Thephysical meaning of X is clear. It tells the order of points p in the edge e. 3Dmatching space 0 is also de�ned so that with 3 coordinates representing X(plij),m, and X(prmn) respective, illustrated by Figure 2. The correspondence processesM (j;m; n); 8j become state variables in matching space. The solutions of corre-spondence problem are then represented as paths through matching space. Thequestion is to search for a constrained path which minimizes the cost.Since the correspondence algorithm is a minimization process, the key issue isthe design of the cost function to be minimized and to achieve this minimizatione�ciently.3 Disparity Analysis and ExperimentThe binocular viewing geometry can be represented by Figure 3. The image coor-dinates (x; y) of point P = (X;Y; Z)T is given by� x = fax XZy = fay YZ ;where (ax; ay) are aspect ratios.Now we move the cyclopean eye by rotation R = (!x; !y; !z)T and then trans-lation T = (tx; ty; tz)T . Under rigid motion, we have_P = T �R � P:



British Machine Vision ConferenceBy di�erentiation and substitution of above equations, we acquire horizontaldisparity h and vertical one v as8>>><>>>: h = xr � xl � _x = fax _XZ � fax XZ _XZ= faxtx� � fax!y + axay !zy � tz�x + !xfay xy � !yfaxx2v = yr � yl � _y = fay _YZ � fay YZ _ZZ= fayty� + fay!x � tz�y � !z ayax x+ !yfax xy + !xfay y2 ;where � = 1=Z.Back to the two view eyes, we can have (tx; ty; tz) = (�I cos ; 0;�I sin) and!y = tx=d. So � h = �Ifax cos � + I sin x� + gh()v = I sin y� + Ay2 +Bxy +Cx+Dy +E ;where gh() and co�ciencies A � E are dependent only on camera geometry andimage coordinates.Since the deviation from symmetric vergence I sin  is generally small. Thevertical disparity thus depends very weakly on the �(x; y), i.e. the depth structureof the scene. In other words, we can assume that the vertical disparity v encodesonly the camera geometry. Thus, we acquirev � v̂ = Ay2 +Bxy +Cx+Dy + E:
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British Machine Vision ConferenceSince vertical disparity is very weakly dependent on depth structure of scenearound �xation area [6], we use the approximate expression of vertical disparity v̂to serve as a predictor. The co�ciencies A�E are estimated directly from modeldisparities v(x; y) by linear least squares.The model constraint can then be de�ned asj v � v̂ j< �where � are the deviation limit derived from the vertical disparity approximationco�ciency estimate variances and the camera calibration.5 Constraints and Cost FunctionThe cost function is de�ned by constraints imposed on the correspondence pro-cess, which reect assumptions underlying the matching process. In our stereocorreponding algorithm, following constraints are used.Uniqueness With uniqueness constraint, we assume there is at most one matchto any primitive in the left imge. Uniqueness prohibits multiple matches fromoccuring. The uniqueness constraint can be stated asPmPnM (j;m; n) =0; 1; 8j:Monotonicity The monotonicity can be expressed as that the function X(prmn)is monotonic with respect to X(plij) for all such j that plij matches prmn.It has been pointed out [8] that monotonicity constraint can be violated,such as in the case of the double-nail illusion [10]. Actually this violationmay also occur due to noise in images or the lack of robustness of edgeoperator. The occurances in this case are always at the end points of anedge. Therefore, the monotonicity constraint is suspended for those pointswhose correspondences are end points of an edge.Disparity Gradient In the PMF stereo [14], disparity gradient has been ex-ploited to give neibourhood support to a match.For two matches M (j0;m0; n0) = 1 and M (j1;m1; n1) = 1, their dispar-ity gradient �d is de�ned as �d = 2k(prm0n0�pli1j1 )�(prm0n0�pli0j0 )kk(prm1n1+pli1j1 )�(prm0n0+pi0j0 )k : Then thedisparity gradient can be represented as �djj+1 � �dmax; where �dmax isdisparity gradient limit, usually 1.1 or 1.2 [13]. As mentioned in [13], impos-ing a limit on disparity gradient implies a limit on the reorientation of edgesegments in order that they be allowed to be matched.Epipolar Constraint Ideally the correspondence of a primitive should lie in theepipolar line. In practice, due to errors in estimate of camera geometry anderrors of imaging, deviation from the epipolar line should be allowed, thoughat a penalty, provided this deviation is within a limit.Edge Constraint In an edge-based correspondence problem, it is safe to assumethat neighbouring points of a single edge in one image would more likely



British Machine Vision Conferencematch points of another single edge in another image. But in practice ap-plying an edge �lter on the projection of a 3D edge may result in severalsegments. Consequently 2 neighbouring points of one edge, with one match-ing to either end point of an edge, may not match to two points of oneedge.So we can de�ne the edge constraint as that correspondences of neighbouringprimitives lie on some edge except for those primitives whose correspondencesare end points of a edge.The cost function can thus be de�ned asC = C1 +C2 +C3 +C4 +C5:The �rst item C1 is based on the correlation at intensity level, i.e.,C1 =Xj Xm Xn M (j;m; n)Corr(j;m; n);where Corr de�nes the correlation process. The second item C2 is a penalty forunmatched primitives. Denote au to penalty for one unmatched primitive, thenC2 = auXj (1 �Xm Xn M (j;m; n)):The third term is a penalty for deviation from the epipolar constraint.C3 =Xj Xm Xn M (j;m; n)fd(j;m; n);where fd(j;m; n) de�nes the epipolar deviation penalty. The forth term is ane�ective piecewise smooth function [8].C4 = �Xj qj Dj+1 �Dj j;where Dj is the disparity with respect to primitive plij. It implies correspondencesof neibouring primitives are usually neibouring and also discourage staircase-like disparity corresponding to interlaced matched and occluded primitives. LetD(j;m; n) be the disparity between the points prmn and plij and rewrite C4, wehaveC4 = �Xj sjXm Xn M(j + 1;m; n)D(j + 1;m; n) �Xm Xn M(j;m;n)D(j;m;n):The �fth cost item C5 is from an edge constraint which states correspondences ofneibouring primitives usually lie within some edge. So we de�neC5 = �Xj u(Xm Xn (M (j + 1;m; n)�M (j;m; n))m);where function u is de�ned as u(x) = � 0; if x = 0;1; else: It should be noticed thatboth the cost components C4 and C5 make contribution to a solution of smoothsurface. But C4 is de�ned on pixel coordinates, while C5 is de�ned on the num-bering scheme, i.e. the matching space.



British Machine Vision Conference6 Dynamic ProgrammingTo minimize cost function C with respect to M is a problem ofPjPmPn vari-ables. We here use dynamic programming to transform it into PjPmPn sub-problems each of which consists of one variable. Since computations increaseexponentially with the number of variable, but only linearly with the number ofsubproblems, the advantage of using dynamic programming is tremendous.Searching using dynamic programming is illustrated by Figure 4. Suppose thecurrent searching point is (j;m; n), then the required subproblems, without anyconstraint, should be all possible points lies on the plane Z = j�1. While the edgeconstraint reduces them to the shaded line, i.e. on the same edge, the epipolarconstraint and the model constraint cut the line with two curves. Finally, applyingthe monotonicity constraint de�nes the short piece of thick line.
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j-1Figure 4: Correspondence searching using dynamic programmingWhen the edge constraint cannot hold, as in the cases of end primitives, therequired subproblems are given by epipolar constraint, preferably beginning prim-itives of edges where the epipolar constraint hold. This is also used to providestarting searching points at Z = k1, where no edge constraint is available.7 ExperimentThe algorithm was implemented using the TINA vision system [15]. The experi-ments on an industrial object was shown in Figure 5. Figure 5(c) has been zoomedto give a more intelligible illustration. The correspondence results are satisfyingand are achieved in a few seconds. Figure 6 shows an experiment on the sameobject but at another pose and on a more cluttered background.We use the computed disparities to recover the scene structure using the cali-brated camera geometry and prior model information. The accuracy of this recov-ered pose estimate can be used as a measure of the performance of the matching
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(a) Edges in the left image (b) Edges in the right image (c)correspondenceFigure 5: Matching results for edges �tting with 2D templates of the object focusfeatures. Thin lines in (c) gives disparity for every �fth points along the curve
(a) Edges in the left image (b) Edges in the right image (c)correspondenceFigure 6: Matching results for edges �tting with 2D templates of the object focusfeatures with the object at another pose. Thin lines in (c) gives disparity for every�fth points along the curvealgorithm.The recovered three templates of the object are shown in Figure 7 and Figure 8,corresponding to Figure 5 and Figure 6 respectively.8 SummaryAn edge-based correspondence algorithm is described for use in a model-drivenstereo vision context. The algorithm make an extensive use of prior knowledgeabout the object. A model constraint, which sets bounds of vertical disparities, isdeveloped to prune false alarm and speed up the search. Dynamic programmingis used to search the correspondence e�ciently.9 AcknowledgementY. SHAO is sponsored by the Sino-British Friendship Scholarship Scheme. Authorsfeel indebted to all members in AIVRU at the University of She�eld.
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Figure 7: Recovered object templatesand their true counterparts. Thedashed lines and circles by thickenedlines are for the object templates, whilethe solid line triangle and circles by nor-mal lines are those recovered. the posi-tion error is 3:4mm and the pose erroris 1:1� 0 20 40 60 80 100 120
−50

0

50
0

10

20

30

40

50

60

70

x (mm)
y (mm)

z 
(m

m
)

Recovered object templates and their model counterparts
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