A Model-Driven Stereo Correspondence
Algorithm Using Dynamic Programming

Y. Shao J. E. W. Mayhew
AIVRU, The Univeristy of Sheffield, Sheffield S10 2TP, UK

email: yuan,mayhew@aivru.shef.ac.uk

Abstract

We describe an edge-based stereo correspondence algorithm in the
model-driven vision system. A constraint derived from the 3D model
is used to prune false alarms and speed up the matching process. This
constraint is based on computional considerations and experimental
and psychological observations concerning vertical disparities. An edge
constraint is also presented. A numbering scheme is used to facilitate
the implementation of the correspondence algorithm using dynamic
programming. Experiments on natural images show that the corre-
spondence of an edge can usually be achieved in a few seconds. The
computed disparities are further incorporated into object model to re-
fine the estimates of object pose.

Keywords: Correspondence, Constraints, Cost function, Model-driven vision,
Dynamic programming

1 Introduction

The work reported here is a part of an ongoing research project “model-driven
stereo vision under variable camera geometry”, as shown in Figure 1. Three ma-
jor stages can be identified: stage 1 uses simple grey-level image processing and
2D templates of 3D object models embedded in a Bayesian statistical reasoning
architecture to provide an object localisation system. The outputs of this stage are
estimates of the object position and pose; in stage 2, a stereo matching algorithm
computes the disparities of object templates. It uses the priming preliminary esti-
mates of object pose from the previous stage to facilitate matching. The outputs
of this stage are disparities of object template. Details of this stage will be de-
scribed in this paper; stage 3 uses an object motion model, disparity information
from stage 2, and a smoothing filter to track and foveate the object.

The object used in this research is a Toyota component. Three focus features,
corresponding to “bosses” on the part are chosen. Each focus feature consists of
two nearly concentric circles and their centre. We use 2D template to represent
the projection of the 3D focus features onto image planes. Each template thus
consists of two elliptical edge segments and a circular feature, i.e. a blob.

Mapping two 2D images into 3D disparity space is an ill-posed problem. So
constraints, derived from a priori assumptions about the scene structure and the
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Figure 1: Model-driven stereo vision under variable camera geometry

camera geometry, are used to make the problem solvable. Widely used constraints
are uniqueness [11], continuity [12][9], smoothness [1][b] and the disparity gradi-
ent [13]. To deal with the salient features in a scene, i.e. the discontinuities
in depth at boundaries of objects, the discontinuities in surface orientation, and
steeply sloping surfaces, Belhumeur [2] suggested a stereo algorithm should inter-
nally maintain a detailed map of scene geometry. In his algorithm [3] depth and
occluding countours are explicitly represented. Geiger [8] dealt with occlusion by
imposing an occlusion constraint, which suspends the smoothness constraint at the
boundraies of objects explicitly. Despite the progress made on generic solutions to
correspondence process, we suggest that including further constraints derived from
the application domain could be used to improve the performance of the matching
algorithm. In this paper we use prior knowledge about the scene or objects to
prune false alarms and quicken matching. In our model-driven vision [16], the
prior knowledge about the scene is encoded in a (weak) model.

Computationally, the solution of the correspondence problem minimises a cost
function incorporating constraints. Geiger [7] used dynamic programming (DP) to
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address this problem. His algorithm based on DP was basically a 1D process, either
along epipolar line or along a given edge. In this paper we propose a numbering
scheme to serve representation of the correspondence search space. This scheme
allows an intrinsically 1D algorithm (DP) to work in a 2D problem space, i.e. both
along epipolar line and along edge features.

The stereo correspondence algorithm takes an object model, (weakly) cali-
brated camera geometry, focused 2D template and edges as input. After minimiz-
ing a cost function under constraints using dynamic programming, it outputs the
disparities of an edge template.

2 Notation

Let’s denote el(el) to edges in left (right) images. And let p!,,(p%,,) be points
lying on the edge e/ (e”,). Then the question becomes, for points pﬁj, for all 5, on
any edge !, to compute their correspondences with primitives in the right image.

We adopt in this paper matching process M, as used in [8], and extend it into
3 dimension numbering scheme. M is defined as

- .
M(j,m,n) = { é’ if py,,, matches p;;;

else.

Now we define an ordering function X as X(pi»]») = j, and X(pl,,) = n. The
physical meaning of X is clear. It tells the order of points p in the edge e. 3D
matching space U is also defined so that with 3 coordinates representing X(pﬁ»]»),
m, and X (pl,,) respective, illustrated by Figure 2. The correspondence processes
M(j,m,n),¥j become state variables in matching space. The solutions of corre-
spondence problem are then represented as paths through matching space. The
question is to search for a constrained path which minimizes the cost.

Since the correspondence algorithm is a minimization process, the key issue is
the design of the cost function to be minimized and to achieve this minimization
efficiently.

3 Disparity Analysis and Experiment

The binocular viewing geometry can be represented by Figure 3. The image coor-
dinates (x,y) of point P = (X, Y, Z)T is given by

{ x:faxg

y:fay%

bl

where (ag, ay) are aspect ratios.
Now we move the cyclopean eye by rotation R = (we,wy, w, ). and then trans-
lation 7' = (t;,1,,t,). Under rigid motion, we have

P=T-RxP.
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By differentiation and substitution of above equations, we acquire horizontal
disparity A and vertical one v as

h = w,—wi~i=fa % - fa 5%
= fautod = fagwy + grwoy — L Av + FEey — sk
vo= y-umy=for— fay T L

Wy W

= Jagtyd + faywe — . dy —w. 2o+ ey + f2y?

where A = 1/7.
Back to the two view eyes, we can have (t5,t,,f,) = (—Icosvy,0,—Isiny) and
wy =1tz/d. So
h = —IfazcosyA+ IsinyzA + gn()
v = Isinyyl+ Ay> +Bry+Cz+Dy+E °

where gp() and cofficiencies A — E are dependent only on camera geometry and
image coordinates.

Since the deviation from symmetric vergence Isin<y is generally small. The
vertical disparity thus depends very weakly on the A(z,y), i.e. the depth structure
of the scene. In other words, we can assume that the vertical disparity v encodes
only the camera geometry. Thus, we acquire

v 0= Ay’ + Bay+ Cx+ Dy + E.

k1

X (P

Figure 2: 3D match space for feature- Cyclopean &y&~ X

based correspondence, within which

search occurs. Axis j is the primitives

in left image, axis m is edges in right Figure 3: Cyclopean camera geometry
image, and X(pl,,) are primitives on

those edges, represented by the thick

dashed lines

4 Model Prediction

In model driven vision [16], the system possesses knowledge about a scene or
objects. This knowledge can then be used to predict correspondences of an edge
primitive which is a component of the model templates [16].
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Since vertical disparity is very weakly dependent on depth structure of scene
around fixation area [6], we use the approximate expression of vertical disparity v
to serve as a predictor. The cofficiencies A — E are estimated directly from model
disparities v(z, y) by linear least squares.

The model constraint can then be defined as

|v—v|<(

where ( are the deviation limit derived from the vertical disparity approximation
cofficiency estimate variances and the camera calibration.

5 Constraints and Cost Function

The cost function is defined by constraints imposed on the correspondence pro-
cess, which reflect assumptions underlying the matching process. In our stereo
correponding algorithm, following constraints are used.

Uniqueness With uniqueness constraint, we assume there is at most one match
to any primitivein the left imge. Uniqueness prohibits multiple matches from
occuring. The uniqueness constraint can be stated as >~ > M(j,m,n) =

0,1, V.

Monotonicity The monotonicity can be expressed as that the function X (p,,,)
1s monotonic with respect to X(pi»]») for all such j that pﬁ»]» matches pr ...
It has been pointed out [8] that monotonicity constraint can be violated,
such as in the case of the double-nail illusion [10]. Actually this violation
may also occur due to noise in images or the lack of robustness of edge
operator. The occurances in this case are always at the end points of an
edge. Therefore, the monotonicity constraint is suspended for those points
whose correspondences are end points of an edge.

Disparity Gradient In the PMF stereo [14], disparity gradient has been ex-
ploited to give neibourhood support to a match.
For two matches M (jo, mo,ng) = 1 and M(ji1,m1,n1) = 1, their dispar-
. . .  2(Prgng =P )= Prrgnn —Piaio)ll
ity gradient éd 1s defined as é6d = T T T I Then the
disparity gradient can be represented as 6d;; 41 < 0dpar, Where 8dias is
disparity gradient limit, usually 1.1 or 1.2 [13]. As mentioned in [13], impos-
ing a limit on disparity gradient implies a limit on the reorientation of edge
segments in order that they be allowed to be matched.

Epipolar Constraint Ideally the correspondence of a primitive should lie in the
epipolar line. In practice, due to errors in estimate of camera geometry and
errors of imaging, deviation from the epipolar line should be allowed, though
at a penalty, provided this deviation is within a limit.

Edge Constraint In an edge-based correspondence problem, it is safe to assume
that neighbouring points of a single edge in one image would more likely
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match points of another single edge in another image. But in practice ap-
plying an edge filter on the projection of a 3D edge may result in several
segments. Consequently 2 neighbouring points of one edge, with one match-
ing to either end point of an edge, may not match to two points of one
edge.

So we can define the edge constraint as that correspondences of neighbouring
primitives lie on some edge except for those primitives whose correspondences
are end points of a edge.

The cost function can thus be defined as
C=0C14+0Cy+Cs+Cy+ Chs.

The first item € is based on the correlation at intensity level, i.e.,
C = Z Z Z MG, m,n)Corr(j,m,n),
i m n

where Corr defines the correlation process. The second item C5 is a penalty for
unmatched primitives. Denote a, to penalty for one unmatched primitive, then

Co=ay» (1= M(j,m,n)).
i m n
The third term is a penalty for deviation from the epipolar constraint.

C3 = ZZZM(], m,n) fa(j, m,n),

where fg(j,m,n) defines the epipolar deviation penalty. The forth term is an
effective piecewise smooth function [8].

Ca=pY /I Diy1—Dj |,
J

where D; is the disparity with respect to primitive pﬁj. It implies correspondences
of neibouring primitives are usually neibouring and also discourage staircase-
like disparity corresponding to interlaced matched and occluded primitives. Let
D(j,m,n) be the disparity between the points p, . and pﬁ»]» and rewrite Cy, we
have

Cy :/LZ\/|ZZM(j—l—l,m,n)D(j—l—l,m,n)—ZZM(j,m,n)D(j,m,n).

The fifth cost item Cf is from an edge constraint which states correspondences of

neibouring primitives usually lie within some edge. So we define

Cs = AZU(Z D (M(j+1,m,n) — M(j,m,n))m),

0, ifz=0,
1, else.
both the cost components C4 and C5 make contribution to a solution of smooth
surface. But C4 is defined on pixel coordinates, while C5 is defined on the num-
bering scheme, i.e. the matching space.

where function u is defined as u(z) = { It should be noticed that
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6 Dynamic Programming

To minimize cost function C' with respect to M is a problem of Z]' Yo 2y, vari-
ables. We here use dynamic programming to transform it into 7, >° >~ sub-
problems each of which consists of one variable. Since computations increase
exponentially with the number of variable, but only linearly with the number of
subproblems, the advantage of using dynamic programming is tremendous.

Searching using dynamic programming is illustrated by Figure 4. Suppose the
current searching point is (j, m, n), then the required subproblems, without any
constraint, should be all possible points lies on the plane Z = j—1. While the edge
constraint reduces them to the shaded line, i.e. on the same edge, the epipolar
constraint and the model constraint cut the line with two curves. Finally, applying
the monotonicity constraint defines the short piece of thick line.

Z , Leftimage

.
4 .
< : ‘
7 .
: .
. : i .
, . - ’
4 .
. - ,

k2

e L — - = = = — = = s

= X(Prmn)
N k3(m) Right primitives

Figure 4: Correspondence searching using dynamic programming

When the edge constraint cannot hold, as in the cases of end primitives, the
required subproblems are given by epipolar constraint, preferably beginning prim-
itives of edges where the epipolar constraint hold. This is also used to provide
starting searching points at Z = k1, where no edge constraint is available.

7 Experiment

The algorithm was implemented using the TINA vision system [15]. The experi-
ments on an industrial object was shown in Figure 5. Figure 5(¢) has been zoomed
to give a more intelligible illustration. The correspondence results are satisfying
and are achieved in a few seconds. Figure 6 shows an experiment on the same
object but at another pose and on a more cluttered background.

We use the computed disparities to recover the scene structure using the cali-
brated camera geometry and prior model information. The accuracy of this recov-
ered pose estimate can be used as a measure of the performance of the matching
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Figure 5: Matching results for edges fitting with 2D templates of the object focus
features. Thin lines in (¢) gives disparity for every fifth points along the curve

(a) Edges in the left image

(b) Edges in the right image

(c)correspondence

Figure 6: Matching results for edges fitting with 2D templates of the object focus
features with the object at another pose. Thin lines in (¢) gives disparity for every
fifth points along the curve

algorithm.

The recovered three templates of the object are shown in Figure 7 and Figure 8,
corresponding to Figure 5 and Figure 6 respectively.

8 Summary

An edge-based correspondence algorithm is described for use in a model-driven
stereo vision context. The algorithm make an extensive use of prior knowledge
about the object. A model constraint, which sets bounds of vertical disparities, is
developed to prune false alarm and speed up the search. Dynamic programming
is used to search the correspondence efficiently.
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Recovered object templates from stereo and their modular counterparts

X (mm)

Figure 7: Recovered object templates
and their true counterparts. The
dashed lines and circles by thickened
lines are for the object templates, while
the solid line triangle and circles by nor-
mal lines are those recovered. the posi-
tion error is 3.4mm and the pose error
s 1.1°
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