
A Stochastic Framework For ObjectLocalisationY. Shao, J. E. W. MayhewAIVRU, The Univeristy of She�eld, She�eld S10 2TP, UKemail: fyuan,mayhewg@aivru.shef.ac.ukAbstractWe describe a Bayesian architecture to estimate the position and poseof a 3D object. The system starts with knowledge of the 3D structureof the object and the prior probability distribution of its position andorientation in the workspace. This information is used to guide thesearch for focus features in the image, and the information recoveredfrom the image processing is used to re�ne the estimates of the x-yposition and pose of the object. The results of intermediate stages ofprocessing is propagated using a Bayesian methodology. After iterationaround the network, the peaks of the �nal probability distributionsare used to estimate the position and pose, and the widths of thedistributions provide a measure of con�dence.The results of the study suggest that grey-level image processingalgorithms and a simple 3D model, embedded in a Bayesian statisticalreasoning architecture can provide a highly e�ective, albeit specialisedobject localisation system.keywords: model-driven vision, Bayes net, deformable template, object localisation1 IntroductionThis paper is to establish a stochastic framework for object localisation, as apart of an ongoing research project \model-driven stereo vision under camerageometry" [12].The starting point for the research reported here is the work of The Rochestergroup [10] who exploited a Bayesian reasoning paradigm to build an architecturefor the control and deployment of a suite of vision processing algorithms. Theychose as their original task domain a table setting reasoning problem. The sys-tem answered questions concerning whether the number of places, whether themeal was breakfast or dinner etc. Later work [1] extended the system to reasonabout the scenes containing moving objects, model trajectories and plan appropri-ate monitoring strategies. The system embodied knowledge of the task domain,the vision algorithms, and their situation dependent appropriateness and costsof deployment. A foveating strategy controlled by the emerging interpretation ofthe scene determined the size and position of the image region processed and thealgorithms utilised therein.
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British Machine Vision ConferenceOur research is to exploit and later, extend the general principles demonstratedby Brown and colleagues in a di�erent task domain. The application domain wehave chosen is the 3D pose identi�cation and object veri�cation of an industrialpart under conditions of variable camera geometry using a foveating 4 dof stereocamera head. Previous work used model driven expectations to detect obstacleson the ground plane under variable camera geometry [11].A long term aim of the project is to develop stereo algorithms in which ge-ometry obtained from a previous �xations [5], head positions and model drivenexpectations is taken into a di�erent viewing sitations and used as contraints inthe solution of the stereo fusion correspondence problem. As a step towards thisaim we have begun to develop a Baseyian based task control architecture to deploylow level vision algorithms containing as much as possible (or needed) informationspeci�c to the `to be recognised object', the workspace, and its illumination.2 The TaskThe task is to �nd the x and y position and rotational pose of a Toyota shaftassembly, as shown in Figure 1. Three focus features corresponding to bosses ofthe object labeled by crosses in the �gure are chosen. We have available a precise3D geometrical model of the object. The stereo camera rig has been calibrated, andwe have an approximate estimate of the object's position and pose which we canvary as part of the experimental manipulation. The shaft assembly is constrainedto have only three degrees of freedom. Its position can vary on a horizontal plane,and the position of this plane is known in the camera coodinates. The objectcan be rotated around the axis normal to this plane, The task is to estimate thetranslation along the x and y axes and the rotation around the z axis.3 Image Grey Level Blob DetectionWe refer to the process of localising the boss focus features using the F�orstneroperator [4] as a blob detection. The operator is designed to identify potentialcircular symmetrical features withinin an region of interest. The operator treatspixels within the region individually. It uses the \slope element", i.e., the straightline going through the pixel pi and the direction of the gradient 5gi. The ideais that the circular symmetrical center b, if exists, minimizes the weighted sum ofthe distance ni from the slope emements. A F�orstner blob candidate b is given by(Xi Wi) � b = (Xi Wi � pi); (1)where the weight matrixWi =k 5gi k2 �� sin2 �i � cos �i sin �i� cos �i sin �i cos2 �i � : (2)Obviously, the blob centre estimate b is the weighted centre of gravity of allpoints pi. This operator can also be interpreted as a straight-line �t in Houghspace. Dots in Figure 1 shows detected blobs for the observed object.



British Machine Vision ConferenceThis operator also provides the con�dence contours (usually an ellipse) of theposition of the blob. We assume that the F�orstner blob operator is an unbiasedestimator, and we take r2(v) as the variance. Then, assuming a Gaussian distribu-tion, we can build the probability distribution p(vjb) of the blob centre coordinatesv as follows: p(vjb) = 1p2�r(v) exp(�dist2(b; v)2r2(v) )=N; (3)where dist is the distance function and N is the normalisation factor.
Figure 1: detected blobs 1
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Figure 2: Deformable template for atracked feature4 Deformable TemplateThe performance of focus feature localisation using the blob operator will de-teriorate quickly if the uncertainty of the initial estimation becomes large. Foran instance, given as the initial estimate of the object pose (N (50mm; 50mm),N (�50mm; 50mm); N (�30�; 30�))T when the correct pose is (0mm; 0mm; 0�),the localisation proved unsuccessful. This is due to the increase in number of theplausible but incorrect `feature' matches.To address this problem we combine the edge information with the blob de-tection using a deformable template approach [16]. This can be regarded as con-volving an image with a exible mask corresponding to the feature to be localised.The template consists of a blob and two conics, corresponding to the edges of theboss feature. The low level image processing now involves both the F�orstner bloboperator and the canny edge operator [2]. Note that the both operators share thesame gradient detection stage. A further stage of ellipse �tting [8] are undertakento give elliptical features.The template geometry in the image plane is shown in Figure 2. The template isrepresented by twelve parameters, i.e., (b; s1;m1; n1; s2;m2; n2). (m1; n1) models(the size, shape, orientation of) an elliptical edge around a circular feature, wherem1 is the major axis and n1 is the minor radius. Similarly (m2; n2) gives anotherellipse. s2 de�nes the shift between the centres of those two edges. b representsthe position of the blob as determined by the F�orstner operator, and s1 is the



British Machine Vision Conferencedi�erence in the position estimated by the ellipse �tting and the blob operator.The template is deformable since it is de�ned in image space and varies with theposition and pose of the object.The measure of the goodness of the match of an candidate elliptical edge (m̂; n̂)to the model (m; n) is de�ned as follows:fe =km� m̂ k2 +k1 � ( nkm k � n̂k m̂ k)2 + k2� k mkm k � m̂k m̂ k k2 : (4)Here k1 and k2 are weights. The �rst item of above equation relates to the sizedi�erence, the second to the shape and the third to the orientation.Now we are able to de�ne the measure as an energy function as followsE = a1 � fe1 + a2 � fe2 + a3� k s1 � s2 k2 +a4� k s1 � ŝ2 k2 +a5� k b� b̂ k2; (5)where fe1 is with respect to the �rst elliptical edge (m1; n1), and fe2 to the secondone. The blob and edge features within the search area that minimizeE are chosenas candidate features.Using the Gibbs distribution [6], we can have the probability of the 2D tem-plate t of a focus feature f : p(t) = exp(�ET )=N; (6)where T is the temperature, which can simply set to 1 if proper factors ai; i =1; 2; : : : ; 5 have been chosen, and N is the normalization factor. We simply usethis p(f) to replace p(fj js) in equation ( 10) to propagate the information overthe Bayes net.5 A Bayesian NetWe use a causal Bayes net [7] to represent the knowledge about the model. BesidesBayes net, probalistic knowledge representation and Dempster-Shafer can be twoalternatives. Figure 3 shows the causal Bayes net for this task. In this net, the nodeS represents the probability distribution of the position and pose of the object in3D space, while F1, F2, . . . , Fn respresent the distributions of the features in imagecoordinates. The object position and pose node S carries the prior distributionN (ŝ0; �̂0).Denote ffiji = 1; 2; : : : ; ng to the object's feature set to be localised. At �rstwe treat each feature individually. With the initial estimation N (ŝ0; �̂0) for theobject and its 3D geometrical features, the probability distribution of each featurefi over the 3D world space, pw(fi); w � R3, can be easily computed. This proba-bility distribution is then projected into the 2D image space using known camerageometry. The distribution map p(fi) of feature fi over the image is obtained.Using a given con�dence level (0.05 say), we calculate the search bound forthe feature fi. The search bound de�nes an area such that the probability of thefeature lying outside this area is no more that the given con�dence level. Withinthis area, we apply the F�orstner blob operator to �nd candidate blobs. Suppose



British Machine Vision Conferenceblobs fbijjj = 1; 2; : : : ;mg are found, i.e., we have the distributions p(vjbij). Underthe mutual independence assumption, the joint distributions are given byp(vjbij) = p(fi) � p(vjbij): (7)By incorporating the 2D template probability (6) into the above equation. Wehave p(v) = p(fi) � p(vjbij) � p(ti): (8)We make the assumption that for feature fi, its corresponding template is thatwhich maximises (8). After we have located the template of the feature fi, wethen be able to update its probability map in the image. so thatp(fijv) � p(jv): (9)We now use this information (the image location of fi) to update the knowledgeabout the model. Let p(s) (where s = (tx; ty; rz)T ) denote the distribution of theposition and pose of the object. Using Bayes rule, we havep(sjfi) = p(fijs) � p(s)p(fi) : (10)p(s) is the prior distribution N (ŝ0; �̂0), and p(fi) is the normalisation factor, withp(fi) = Rs�R3 p(fijs)p(s)ds. Using the estimated transformation T̂wo and theknown Tiw, for each position and pose s, we are able to establish the projectiongeometry from object reference to image coordinate:v = Tiw � T̂wo � s: (11)Then, p(fijs) = p(fijv): (12)Having updated the knowledge about the object position and pose, we propa-gate the evidence to the other nodes of the net. Again, using Bayes rule,p(fj jv) = p(sjfj) � p(fj)p(v) : (13)Here p(fj), the prior distribution, can be computed from equations ( 8) and ( 9).p(v) is a normalisation factor, with p(v) = Rv�RI p(sjfj) � p(fj)dv, where RI refersto the image space.To compute the probability p(sjfj), we enforce the constraints on possibleobject motions. eg. object position varies only on the x-y plane. We then areable to de�ne a 3D (2 dimensions for translations along x and y axes, and one forrotation around z axis) trajectory t repesenting the re�nement of the estimates ofthe object`s position and pose s.This trajectory is represented in a form of parameter space, as illustrated inFigure 4. Here, again subscript w is refered to the world reference and o to theobject reference. Feature fj in the object reference, i.e., k Oofj k and �, is given by



British Machine Vision Conferencethe 3D geometrical model of the object. For a given feature fj in world reference,i.e., k Owfj k and �, we have8<: r = �+ � � �xw =k Owfj k � cos�� k Oofj k � cos(�+ �)yw =k Owfj k � sin�� k Oofj k � sin(�+ �): (14)This gives the trajectory t, with � as the trajectory parameter changing from 0
F F F1 2 n. . .
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Figure 3: A causal Bayes net α
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tFigure 4: Trajectory of the object posein the world referenceto 2�. Therefore, p(sjfj) = Zt p(s)ds: (15)It should be noted that these constraints on the dof of the object are speci�c toour task domain, though whatever constraints are used, the equation ( 15) holds.6 ImplementationThe preceding algorithm was implemented using TINA (AIVRU's own vision sys-tem) [9]. A stereo camera rig mounted on the autonomous vehicle COMODE[15] was used to grab images of the object.To calculate the probability distribution of the object position and pose, wedigitalize the 3D space (2D for x and y translations, and 1D for z rotation) withsampling interval of �i=20 and centred at the initial estimate, where �i is thestandard deviation of the prior estimate. We also set the limits of sampling at�3�i. So for each dimension there are [3�i � (�3�i)]=(�i=20) = 120 samplingpoints. Thus the probability distribution of the object position and pose estimateis represented as a 120� 120� 120 volume.The probability distribution of the location of a feature is computed at everypixel over the image plane. This means 512�512 probability distribution \image"for each feature of the total 3 focus features.Once a probability distribution of a 2D template is updated, the search bound,or the con�ndence contour at a given level, is to be computed. Starting from thepeak of the distribution, the algorithm iteratively expands the region until the



British Machine Vision Conferenceintegration of the probability distribution reaches the given con�dence level. Thelocalisation of a feature will then only be performed within its search bound.7 ExperimentWe `tracked' the positions of the three focus features of the object, using the distri-butions not exceeding (N (50mm; 50mm); N (�50mm; 50mm); N (�30�; 30�))T asan initial estimate of the object position and pose. We choose the world referencecoordinate to be the same as the object reference, thus the correct position andpose is (0; 0; 0�)T .Repeating experiments with di�erent initial estimates and with the object atdi�erent poses, we found that after two iterations (or passes) a stable (and ratherprecise as well) estimate of the object position and pose was acquired. Aftercompletion of the processing the estimated position and pose of the object iswithin (�1:0;�1:0;�1:5�)T . This error is within a single step of the quantisationof the space used in the computation of the distributions.Given a pose estimate of the object, we can directly draw the 2D templateof the focus features under calibrated camera geometry. Figure 5 and Figure 6shows templates before and after object localisation in two experiments. Fromboth �gures we can see the 2D templates almost perfectly �t with the imageafter localisation. This indicate the position and pose of the object is preciselyrecovered. Figure 7 gives a con�dence boundary at level of 0.1 for the �nalestimate the object position and pose.
Figure 5: Templates before and after lo-calisation. Those templates with crossat center are computed after localisa-tion Figure 6: Templates before and afterlocalisation with the object at anotherpose. Those templates with cross atcenter are computed after localisationFigure 8 shows the evolution of the probability distribution p(f0jv) (so for focusfeatute #0) during processing. Figure 8 (a) is the prior probability distribution



British Machine Vision Conferenceof the feature. Figure 8 (b) is the updated probability distribution after locatingthe feature. Figure 8 (c) is the probability distribution after data from all thosethree features has been incorporated i.e., after the �rst pass. Figure 8 (d) is theprobability distribution after re-localisation of this feature in the second pass.
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Figure 7: Con�dence boundary for the �nal pose estimateThe shape variations and the centre shifts between Figure 8 (a), (b) and (c), andthe slight di�erence between Figure 8 (c) and (d) indicate that� the e�ect of including location information from other features is obvious;� the major e�ect of the second pass is to reduce the uncertainty of, ratherthan the value of the position estimate.8 Summary and ConclusionsIn this paper we have presented preliminary results demonstrating the use of astochastic framework to solve a structured and constrained task. The overallperformance of the system seems most encouraging.Starting from prior knowledge about the 3D structure of the object and itslikely position in the workspace represented as probability distributions, data frompreliminary observations are used to update the predicted locations of the otherfocus features. These search areas are then processed and the the recovered in-formation used to update the position and size of subsequent search areas. Theinformation is propagated using the Bayesian methodolgy.The work is still in the early stage of development. For example it is not pos-sible to claim any complexity of the task control structure, the current controlarchitecture being simple and ballistic (though possible developments are obvi-ous). For example there is no reasoning concerning the deployment of the visionalgorithms; if the system is searching for focus feature #2 then it deploys thevision processing appropriate to verify `exible template of the model feature #2'.In this respect the experiments may be regarded as the �rst steps towards thedevelopment of an architecture in which information appropriate to the particulartask domain can be compiled down into the earliest stages of vision processing.
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(a) From priors
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(b) After locating the feature
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(c) Updating from 1st iteration
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(d) After re−locating this feature

Figure 8: Evolution of probability maps of position of the focus feature #0Thus in conclusion, if one of the holy grails of vision science is the developmentof the general vision system [13, 14], our particular version of the search is fora system architecture in which generality is provided by a Bayesian network (orequivalent probabilistic reasoning system); in which communication is by propa-gation of revised estimates of probability, and where local control is exercised bythe deployment of collections of vision algorithms parametrised by the constraintsof the particular component of the task for which they are uniquely specialised.Who knows, it may work!9 AcknowledgementY. Shao is sponsored by Sino-British Friendship Scholarship Scheme. The authorsfeel indebted to all members of AIVRU at The University of She�eld.References[1] C. Brown, D. Coombs, and J. Soong, Real-tile smooth pursuit tracking, Active
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