
A�ne Integral Invariantsfor Extracting Symmetry AxesJun Sato and Roberto CipollaDepartment of Engineering,University of CambridgeCambridge CB2 1PZ, England.AbstractIn this paper, we propose integral invariants based on group invari-ant parameterisation. The new invariants do not su�er from occlusionproblems, do not require any correspondence of image features unlikeexisting algebraic invariants, and are less sensitive to noise than di�er-ential invariants. Our framework applies a�ne di�erential geometry toderive novel a�ne integral invariants. The new invariants are exploitedfor extracting the symmetry axes of planar objects viewed under weakperspective. The proposed method is tested on natural leaves and isshown to extract symmetry axes reliably.1 IntroductionRecent progress in computer vision has revealed the importance of invariants inobject recognition and identi�cation [9, 12, 13]. Existing invariants applied incomputer vision are of two types: algebraic [9, 14] and di�erential invariants [3, 13].A good example of algebraic invariants is the cross ratio, the ratio of ratios oflength, and is invariant under projective transformations. On the other hand, thegroup curvatures (e.g. Euclidean and a�ne curvature) and their derivatives areinvariant under group transformations, and are called di�erential invariants.It is also useful to classify invariants from their area of de�nition. The globallyde�ned invariants such as the moment invariants [6, 11] are called global invariants,while the di�erential invariants are local invariants. Either type of invariant hasadvantages and disadvantages in computer vision applications. To motivate anew framework of invariants we now summarise the properties of these existinginvariants based on important requirements in computer vision applications.1. Noise Sensitivity:The di�erential invariants often require high order derivatives. For example,a�ne curvature requires fourth-order derivatives [5] and the projective di�er-ential invariants require eighth-order derivatives [13]. Although, high orderderivatives can be computed by �tting polynomial curves to the image fea-tures [13], the computed derivatives are unstable and small noise in the imagecauses large error in invariants. The algebraic invariants, on the other hand, donot require any derivatives and are thus much less sensitive to noise than thedi�erential invariants.2. Correspondence:The advantage of the di�erential invariants is that these are de�ned locally, andthus do not require any correspondence of distinguished image features (cor-ner points, inection points, bi-tangents) to be established, while the algebraicinvariants or semi-di�erential invariants require exhaustive search of the cor-responding groups of points or lines. The continuity and the proximity of theimage features are often used for �nding groups e�ciently and thus reducing the
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number of iterations required [9]. These heuristics however sometimes derivecompletely wrong groups and make the systems unstable. The semi-di�erentialinvariants have recently been proposed [12] to reduce the number of the corre-sponding points required without using high order derivatives. Although theinection points or the bi-tangents of curves can be used as an index for thesemi-di�erential invariants, these points are not always available in images, andfurthermore, �nding the correspondence of these points still remains a problem.3. Occlusion:The locality of invariants is quite important for the occlusion problem. Localinvariants are de�ned at a single point on curves, and thus can be computed eventhough the remaining parts of the curves are occluded or disappear partially,while global invariants, especially moment invariants [6, 11], severely su�er fromocclusion.4. Distinguishability:Locality and globality of invariants are also important for distinguishability ofthe invariants. If we look at a curve locally, it is sometimes quite hard to dis-tinguish a corresponding point from the others. This is because local structuresoften do not have enough information to distinguish points on curves. Thisis closely related to the importance of geometric saliency for curve matchingproposed by Cham and Cipolla [2].In this paper, we propose integral invariants based on group invariant parame-terisation. Unlike the traditional integral invariants (i.e. moment invariants), thenew integral invariants are de�ned semi-locally and therefore do not su�er fromthe occlusion problem. Unlike the algebraic invariants, the new integral invariantsdo not require any correspondence of image features. Furthermore, since the areaof integration is controllable, we can represent the curves by invariant signaturesin many di�erent scales, and can therefore choose the best scale raising the dis-tinguishability. We apply the a�ne di�erential geometry to this framework ofintegral invariants and derive useful invariants under equi-a�ne or special a�netransformations (i.e. a�ne transformations whose determinant is equal to one).The proposed invariants can successfully be applied for extracting the symmetryaxes of planar objects.2 Semi-Local Integral InvariantsIn this section, we investigate a new framework of integral invariants under grouptransformations, which, unlike the algebraic invariants, do not require any corre-spondence of the distinguished image features and are less sensitive to noise thanthe classical di�erential invariants.2.1 Condition of Invariance in Integral FormulaConsider a curve, C, to be parameterised by w. Let I be a line integral of afunction, F , along C with interval of [w1; w2]:I = Z w2w1 Fdw (1)We �rst state a condition of invariance of an arbitrary function I which is wellknown in the Lie Group theorem. Let v be an in�nitesimal generator of the grouptransformation. The following theorem holds [8]:
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1Figure 1: Interval of integration can be identi�ed uniquely from invariant arc-length, w. For example, if w1 and ew1 are corresponding each other, the interval[-1, 1] with respect to w is corresponding to the interval [-1, 1] with respect to ew inthe second image. Even though the curve is occluded partially (second image), thesemi-local integral invariants can be de�ned on the remaining parts of the curve.Theorem 1 Let G be a group of transformations. A real-valued function I isinvariant under group transformations, if and only if the Lie derivative of I withrespect to any in�nitesimal generator, v, of the group, G, vanishs as follows:$v(I) = 0 (2)where $v(�) denotes the Lie derivative with respect to a vector �eld v.The important property of this theorem is that it guarantees invariance not onlyunder in�nitesimal transformations but also under general transformations of thegroup in spite of its description in in�nitesimal criterion.Substituting (1) into (2), we have the following condition of invariance in inte-gral formula:Proposition 1 The integral of a function, F , with respect to a parameter, w, isinvariant under group transformations, if and only if the following identity holdsfor any in�nitesimal generator, v, of the group:$v(F )dw+ F$v(dw) = 0 (3)In practice, since dw includes derivatives, we must compute the Lie derivativeswith respect to the prolonged vector �elds [8] which transform the derivatives ofdw to the derivatives of the transformed dw. We assume in this paper that thevector �elds are prolonged as required.2.2 Semi-Local Integral InvariantsThe above proposition states the general condition that must be satis�ed forintegral invariants under group transformations. The special case of the aboveproposition can be stated as follows.Proposition 2 The integral of a function, F , with respect to a parameter, w, isinvariant under group transformations, if the following two equations hold for anyin�nitesimal generator, v, of the group:$v(F ) = 0; $v(dw) = 0 (4)



Since the Lie derivatives commute di�erentials, the above statement means thatif both F and w are invariant under the group transformation, the integral, I, in(1) is also invariant under the group transformation.The simplest integral invariants can be derived by substituting F = 1 into (1):w = Z w2w1 dwwhich is the so called group arc-length between C(w1) and C(w2), and is invariantunder group transformations as follows:ew = w (5)where, the symbol, e, denotes components transformed by group transformations.Consider a point, C(w1), on a curve C to be transformed to a point, eC( ew1), ona curve eC by a group transformation as shown in Fig. 1. From (5), it is clearthat if we take the same interval [��w;�w] around C(w1) and eC( ew1), then thesetwo intervals are corresponding each other (see Fig. 1). That is, integratingwith respect to the group arc-length, the corresponding interval of integration ofthe original and the transformed curves can be identi�ed uniquely without usingany heuristics. This is a very important property in computer vision applications,since it enables us to de�ne integral invariants even though the curves are partiallyoccluded. For example, in Fig. 1, the curve is occluded in the transformed image.The traditional moment invariants do not work, since in this case the �nite supportassumption is broken, while proposed integral invariants can be de�ned semi-locally on the remaining parts (visible parts) of the curve, and can be used formatching the visible parts of the curves.We now de�ne semi-local integral invariants at point C(w1) with interval[��w;�w] as follows: I(w1) = Z w1+�ww1��w Fdw (6)Note we can take an arbitrary interval, �w, in this formula, that is theoretically wecan derive in�nite number of independent invariants by just taking di�erent inter-val, �w in this equation. This property also enables us to choose the appropriatescale of observation.3 A�ne Di�erential GeometryUp to now we have investigated group invariant integral which do not su�er fromocclusion problems. We now apply a�ne di�erential geometry to this frameworkand derive integral invariants under a�ne transformations. We �rst review wellknown results in a�ne di�erential geometry [5].Consider a smooth planar curve, C 2 R2, parameterised by p to be transformedto eC 2 R2 by a 2D a�ne transformation, A 2 GL(2), as follows:eC = ACwhere, the symbol, e , denotes the components transformed by an a�ne transfor-mation. The curve is also parameterised by a non-trivial parameter, s, which doesnot change under a special a�ne transformation. This parameter is called a�nearc-length, and satis�es [5]: [Cs; Css] = 1 (7)



where, Cs and Css denote the �rst and second derivatives of C with respect tos, and [v1;v2] denotes the determinant of a matrix which consists of two columnvectors, v1;v2 2 R2. Applying the chain rule to (7), the di�erential, ds, of a�nearc-length can be described as follows:ds = [Cp; Cpp] 13 dp (8)where, Cp and Cpp denote the �rst and second derivatives of C with respect top. Di�erentiating (7), and after some manipulation, we arrive at the de�nition ofa�ne curvature, �: � = [Css; Csss] (9)It is easy to show that both ds and � are absolute invariants under special a�netransformations and relative invariants under general a�ne transformations asfollows: d~s = [A] 13 ds e� = [A]� 23�: (10)where, [A] denotes determinant of A. ds and � are the �rst and the second lowestorder a�ne di�erential invariants.As we have seen in (8) and (9), special a�ne di�erential invariants requirefourth-order derivatives with respect to p. Higher order derivatives are requiredfor more than two independent invariants. In the next section, we apply a�nedi�erential geometry to the framework of integral invariants and derive a�ne inte-gral invariants which can be computed from lower order derivatives (up to secondonly) than a�ne di�erential invariants. These novel invariants will preserve theadvantage of local invariants, that is correspondence free and the tolerance to theocclusion.4 A�ne Semi-Local Integral InvariantsIn this section, we derive integral invariants under special a�ne transformations,which unlike the algebraic invariants do not require any correspondence of dis-tinguished image features and are less sensitive to noise than pure di�erentialinvariants. For general a�ne case, see [10].As we have seen in (10), the a�ne arc-length, s, is an absolute invariant underspecial a�ne transformations ([A] = 1). We can therefore use a�ne arc-lengthas the invariant parameter for the semi-local integral invariants. By substitut-ing s for w in (6), we have the following integral invariants under special a�netransformations: I(s1) = Z s1+�ss1��s Fds (11)What function F should we choose in this formula? The answer is that anyinvariant under special a�ne transformations can be applied. Some examples ofF and the derived invariants are now given:1. Using A�ne Curvature:The simplest integral invariant is derived by substituting F (s) = �(s) into (11):I1(s1) = Z s1+�ss1��s �(s)dswhich is an absolute invariant under special a�ne transformations. Althoughthis invariant is less sensitive to noise than the a�ne curvature itself, the orderof the derivatives required is still high.
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C(s       s)1Figure 2: The integral invariant I3(s1) is same as the area made by two vectors,C(s1 +�s)� C(s1) and and C(s1 ��s) �C(s1) (hatched area).2. Using Semi-Di�erential Invariants:Up to now we integrated pure di�erential invariants. It is however also possibleto combine algebraic and di�erential invariants (i.e. semi-di�erential invariants)in this framework. The derivative of C at s1 and the relative position betweenC(s1) and a moving point, C(s), constitute a semi-di�erential invariant [12],F (s) = [C(s) � C(s1); Cs(s1)], where, Cs(s1) denotes the �rst derivative of Cwith respect to s at s1, and s changes from s1 � �s to s1 +�s. SubstitutingF (s) into (11), we have:I2(s1) = Z s1+�ss1��s [C(s)�C(s1); Cs(s1)]dswhich is an absolute invariant under special a�ne transformations. A similarresults have been reported by Van Gool et al. [12]. The major di�erence isthat they used inection points as reference points, while we have used movingpoints which relative position can be identi�ed uniquely by using a�ne arc-length. Van Gool's method requires heuristic search of corresponding points,while our method does not require any search.3. Analytically Solvable Cases:If we choose the function F carefully, the integral formula (11) can be solvedanalytically, and the resulting invariants have simpler forms. For example, ifwe substitute F (s) = [Cs(s); C(s1+�s)�C(s1)] into (11), the integral formulais solved analytically, and the invariant can be described by:I3(s1) = [C(s1 +�s) �C(s1); C(s1 ��s) �C(s1)] (12)which is actually the area made by two vectors, C(s1 + �s) � C(s1) andC(s1��s)�C(s1), as shown in Fig. 2. Similar results have been proposed byBruckstein [1] by a di�erent approach. The invariant requires only the integralof the second order derivatives, and thus its noise sensitivity is similar to thatof the �rst order derivatives, while the noise sensitivity of the pure di�erentialinvariants (i.e. a�ne curvature) requires fourth order derivatives.Procedure for matching two curve segments1. B-spline curves are �tted to Canny edge data of each curve.2. The a�ne arc-length and the a�ne integral invariant (12) with an arbitrarybut constant �s are computed at all points on both curves, and plotted on aninvariant graph with the horizontal axis of the a�ne arc-length and the verticalaxis of the integral invariant. The derived curves on the graph are invariantsignatures up to a horizontal shift.



3. To match curves we simply shift one invariant signature horizontally minimisingthe total di�erence between two signatures.4. Corresponding points are derived by taking identical points on these two sig-natures.5. As we will describe in the next section, the second invariant signature is derivedby just reecting the original signature for extracting the symmetry axes of acurve.5 ExperimentsIn this section, we apply the proposed integral invariants for extracting the sym-metry axes of planer objects. It is known that the bilateral symmetry under weakperspective (skewed symmetric curves) can be described by special a�ne (equi-a�ne) transformations with determinant of �1 [7]. Thus if we reect an invariantsignature of a symmetric curve with respect to the vertical axis and put it togetherwith the original invariant signature, then these two signatures are identical. Eventhough the curve is partially occluded or partially asymmetric, the correspondingsymmetric points on the curve can be extracted automatically by just taking theidentical points in the original and the reected signatures.Fig. 3 (a) shows the image of a natural leaf with symmetric contours. Thecontour curve extracted by B-spline �tting [2] is shown by a thin line. Sincethe leaf is nearly at and the extent of the leaf is much less than the distancefrom the camera to the leaf, we can assume the corresponding symmetric partsof the contour are related by a special a�ne transformation. The solid lines inFig. 3 (b), (c) and (d) show the invariant signatures of the contour computedfrom the proposed method in three di�erent scales (interval of integration). Asshown in these signatures, if the scale is too small, the distinguishability of theinvariant signature degrades, and if the scale is too large, asymmetric parts whichare often caused by occlusion induce error in the signatures. The dashed linesin Fig. 3 (b), (c) and (d) show the signatures derived by reecting the originalsignatures with respect to the vertical axes. The corresponding symmetric pointson the contour curve can be extracted by just taking the identical points in thesetwo signatures (solid and dashed lines). The correspondences of symmetric pointsextracted from Fig. 3 (c) are shown in Fig. 3 (e) by thin lines. Since a pointwhich bisects corresponding symmetric points lies on the symmetry axis, we canderive the symmetry axis by computing the best �t line to the points which bisectcorresponding symmetric points. The thick line in Fig. 3 (e) shows the extractedsymmetry axis of the leaf. Note that even though the extracted contour (thin linein Fig. 3 (a)) includes asymmetric parts, fairly accurate symmetry axis has beenextracted. This is because symmetric parts on the curves can be distinguishedfrom asymmetric parts by using invariant signatures. In Fig. 4, we show theresults from another symmetric object. Even though the object is partially outof the scene, the extracted symmetry axis is accurate, while pure global methods,i.e. moment method [4], do not work in such cases. Fig. 5 compares the noisesensitivity of the proposed invariants with that of di�erential invariants. We �ndthat the proposed invariants are much less sensitive to noise. This is becausethe proposed invariants require only low order derivatives (2nd order), while thedi�erential invariants require higher order derivatives (4th order). These resultscon�rm the power of the proposed method.6 DiscussionWe now summarise and discuss the properties of the proposed framework of in-variants.
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(e)Figure 3: The image of a natural leaf (a). The thin black line shows contour curvesextracted by B-spline �tting [2] to Canny edge data. Invariant signatures of thecurve derived from three di�erent interval of integration are shown in (b), (c) and(d). The interval of integration is (b) 4.0, (c) 20.0 and (d) 40.0 (the interval of20.0 is shown by a thick line in (a)). The solid lines in these graphs show originalsignatures and the dashed lines show the signatures reected with respect to thevertical axes. If the interval is too small (b), the signature is monotonic, while ifthe interval is too large (d), asymmetric parts cause error in signature of symmetricparts. The thin lines in (e) show the corresponding symmetric points on the curveextracted by the invariant signatures (c). The symmetry axis extracted from theproposed method is shown in (e) by a thick line.1. Noise Sensitivity:The proposed invariants require only the integral of the second derivatives, andthe noise sensitivity is therefore close to that of the �rst derivatives, while thepure di�erential invariants require fourth derivatives for special a�ne invariants.The noise sensitivity of the proposed method is thus much better than that ofthe di�erential invariants.2. Correspondence:Since the invariant parameterisation guarantees unique identi�cation of corre-sponding interval for integration, the proposed method does not require anyheuristic search of corresponding reference points for computing invariants.This is a big advantage especially in complex scenes.3. Occlusion:The traditional integral invariants do not work under partial occlusion unlessthe occluded area is identi�ed. In this research, we have shown that it is actu-ally possible to de�ne integral invariants under partial occlusion without usingany heuristics by using invariant parameterisation. We believe this propertyis quite important especially for curve matching in images under relative mo-tion between the observer and the scene, where we have a lot of unpredictableocclusions.
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(e)Figure 4: Another example of a natural leaf which is partially out of the scene.See Fig. 3 for the caption.4. Distinguishability:Another good property of the proposed invariants is that the scale of observation(i.e. the interval for integration) is controllable. This can be done by changing�w in (6). If the scale of observation is too small (i.e. too local), the invariantsdo not have enough distinguishability, whereas if it is too large (i.e. too global),the invariants su�er from the occlusion problem as we have seen in Fig. 3.The extreme case of former is the di�erential invariants, and the latter is theclassical moment invariants. The proposed method provides us invariants whichare somewhere between these two and have both enough distinguishability andtolerance to the occlusion. The choice of scale remains to be investigated.References[1] A.M. Bruckstein, R.J. Holt, A.N. Netravali, and T.J. Richardson. Invariantsignatures for planar shape recognition under partial occlusion. ComputerVision, Graphics and Image Processing, 58(1):49{65, 1993.[2] T.J. Cham and R. Cipolla. Geometric saliency of curve correspondences andgrouping of symmetric contours. In B.F. Buxton and R. Cipolla, editors, Proc.4th European Conference on Computer Vision, pages 385{398, Cambridge,1996. Springer{Verlag.[3] D. Cyganski, J.A. Orr, T.A. Cott, and R.J. Dodson. An a�ne transforma-tion invariant curvature function. In Proc. 1st International Conference onComputer Vision, pages 496{500, London, 1987.[4] S.A. Friedberg. Finding axes of skewed symmetry. Computer Vision, Graphicsand Image Processing, 34:138{155, 1986.[5] H.W. Guggenheimer. Di�erential Geometry. Dover, 1977.
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