
Analysing error of �t functions forellipsesPaul L. RosinDepartment of Computer Science and Information SystemsBrunel UniversityMiddlesex, UB8 3PHemail: Paul.Rosin@brunel.ac.ukAbstractWe describe several established error of �t (EOF) functions for usein the least square �tting of ellipses, and introduce a further fournew EOFs. Four measures are given for assessing the suitability ofsuch EOFs, quantifying their linearity, curvature bias, asymmetry, andoverall goodness. These measures enable a better understanding to begained of the individual merits of the EOF functions.1 IntroductionThe �tting of ellipses to edge data is a common task in computer vision. In partic-ular, this often arises in the context of industrial inspection since circular parts inthe scene are projected into the image as ellipses. There are many algorithms forellipse �tting, but in this paper we shall concentrate on minimisation techniquesrather than others such as the Hough transform voting method. Despite its sensi-tivity to non-Gaussian noise, least squares (LS) �tting is probably the most widelyused approach for estimating the ellipses' parameters, due to its computation e�-ciency and its high e�ciency as an estimator. It operates by minimising the sumof squares of some error term ej measured at each data point Xj = (xj; yj). Thusfor N points the parameters P of the best �t ellipse are obtained byminP NXj=1 e2j :Similarly, other estimation techniques such as the least median of squares de-pend on a suitable error term. However, there has been little comparison betweenthe e�ects of the choice of error term (but see [3, 8, 9]). The Euclidean distancefromXj to the ellipse boundary would be a good choice for ej , but requires solvinga quartic equation which may have up to four solutions, requiring the one with theminimum distance to be determined [10]. To avoid the complexity of evaluatingthe true Euclidean distance it is usual practice to approximate it by some measure{ the error of �t (EOF) function { that is simpler to calculate. Previously wedescribed six approximations [9] (EOF1 - EOF6). In this paper we describe andanalyse a further set of approximations (EOF7 - EOF13).
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British Machine Vision Conference2 Distance Approximations2.1 Algebraic distanceThe simplest approximation is the algebraic distance [2] calculated fromXj to theellipse EOF1 = Q(xj; yj) = Ax2j +Bxjyj + Cy2j +Dxj + Eyj + F; (1)where Q(x; y) = 0 is the general equation of a conic, describing ellipses whenB2 � 4AC < 0. An advantage of (1) is that a closed form LS solution is avail-able whereas the other EOFs described below must be minimised by iterativeprocedures. Figure 1a shows the iso-value contours for EOF1 (the ellipse bound-ary is drawn bold) from which we can make several observations. First, EOF1demonstrates the so called \high curvature bias" in that the spacing between thecontours become wider at the pointed ends of the ellipse, i.e. near the regions ofhigh curvature. Second, the contours get closer with increasing distance out fromthe ellipse. The e�ect of the curvature bias is to cause data near the ends of theellipse to have less inuence on the �t, often resulting in an overestimate of theeccentricity of the �tted ellipse. The second factor is the relationship between theEOF and the Euclidean distance as a function of the Euclidean distance. Ideallythey should be linearly related; a constant scaling factor has no e�ect and can beignored. The super-linear relationship shown by EOF1 causes the outlying datato have a stronger inuence on the �t than a linear or sub-linear relationship, andtherefore increases the sensitivity of the �tting to noise.2.2 Gradient weighted algebraic distanceThe most commonly used improvement over the algebraic distance is to inverselyweight Q(xj ; yj) by its gradient [1, 11, 13]EOF2 = Q(xj ; yj)jrQ(xj; yj)j : (2)The plot of the iso-value contours (�gure 1b) shows that the curvature bias isindeed reduced, although the magnitude of the gradient of the measure inside theellipse is considerably larger than on the outside.1 This asymmetry between thedistance approximation inside and outside the ellipse means that the data insidethe ellipse has more inuence than the exterior data, which could cause the sizeof the �tted ellipse to be underestimated.2.3 Second order approximationNalwa and Pauchon [6] used a second order Taylor series expansion2 to approx-imate the distance d, expanding about Xj . The distance is then obtained by1Artifacts from the plotting process have caused some contours to be missed near the centreof the ellipse.2Taubin [13] showed that EOF2 is equivalent to a �rst order Taylor series expansion.
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(a) EOF1 (b) EOF2(c) EOF7 (d) EOF8(e) EOF9 (f) EOF10(g) EOF11 (h) EOF12a(i) EOF12b (j) EOF13(k) EOF5 Figure 1: Iso-value contours



British Machine Vision Conferencesolving the resulting quadratic equation, obtainingEOF7 = d = min �����Q0(xj; yj) �pQ02(xj; yj) � 2Q(xj; yj)Q00(xj; yj)Q00(xj; yj) ����� : (3)where Q0(xj ; yj) = jrQ(xj; yj)j =qQ2x+Q2yQ00(xj ; yj) = QxxQ2x+2QxyQxQy+Qyy Q2yjrQj2and all coe�cients are evaluated at Xj. This approximation does not hold whenthe roots of the quadratic are imaginary. In practise, we have found that for thehigh curvature sections of eccentric ellipses real roots can only be found close to theboundary. This is demonstrated in �gure 1c where the blank right hand portioncontains imaginary roots.2.4 Pavlidis' approximationPavlidis [7] provides a distance measure which is an improvement over the basicalgebraic distance, de�ned asEOF8 =qAx2j +Bxjyj + Cy2j +Dxj + Eyj + v �pF + v (4)where v = 14� D E �� A B2B2 C ��1� DE �:The improvement of the algebraic distance is evident in the iso-value plot in �g-ure 1d.2.5 Reduced gradient weighted algebraic distanceWe now describe four new error of �t functions which also provide some improve-ments over the algebraic distance. The �rst is based on the observation that thealgebraic distance EOF1 su�ers from severe curvature bias while the weighted al-gebraic distance EOF2 su�ers from severe asymmetry. Both these factors degradethe e�ectiveness of the measures. Possibly some intermediate measure which givesthe jrQ(xj; yj)j term less weighting might produce a superior compromise, espe-cially since their gradients have opposite signs. This is simply achieved by raisingthe weighting term to some power p = [0; 1].EOF9 = Q(xj ; yj)jrQ(xj; yj)jp : (5)Thus EOF9 reduces to EOF1 and EOF2 respectively when p = 0 and p = 1.Figure 1e shows the iso-value contours obtained when p = 0:45; it can be seenthat both the curvature bias and asymmetry are moderate.



British Machine Vision Conference2.6 Directional derivative weighted algebraic distanceAlthough the gradient term in EOF2 corrected much of the high curvature bias ofEOF1 it also introduced some other curvature bias, producing the wavy iso-valuecontours in �gure 1b. These waves are avoided if we replace jrQ(xj; yj)j by thedirectional derivative of Q(xj; yj) in the direction along the ray r = hcos �; sin �idrawn between Xj and the centre of the ellipse C, and we getEOF10 = Q(xj; yj)r � rQ(xj; yj)= Q(xj; yj)cos � (2Axj +Byj +D) + sin � (Bxj + 2Cyj + E) : (6)The resulting iso-value contours (�gure 1f) still have the asymmetry present inEOF2, but the contours appear more regular.2.7 Combined conic and circular distanceThe iso-value contours for the algebraic distance show the e�ects of the curvaturebias: at the pointed ends of the ellipse the distance is underestimated. If, insteadof the algebraic distance of the ellipse, the algebraic distance of the inscribed circle(i.e. setting B = 0 and A = C) were used this would cause the opposite e�ect: thedistance would be overestimated at the pointed ends of the ellipse. This suggeststhat the e�ects of curvature bias could be reduced by combining the two terms.We ignore constant values and just use the simpli�ed symmetric termC(xj; yj) = (xj � xc)2 + (yj � yc)2and combine the terms as their geometric mean:EOF11 =qjQ(xj; yj)jC(xj; yj) (7)This produces iso-value contours (�gure 1g) which have quite low curvature bias,although the asymmetry is substantial.2.8 Concentric ellipse estimationA property of ellipses is that for a point P on the ellipse with two foci F and F0then PF+PF0 = 2a. We use this to make an approximation to the major axis ofthe ellipse with similar proportions through Xj as Xj F + Xj F0 = 2~a. We takethe approximate distance as EOF12a = ~a� a: (8)This is the same as the �rst part of Stricker's [12] two step method for estimating~a. Plotting the iso-level contours in �gure 1h reveals signi�cant low curvaturebias. We describe an alternative to Stricker's subsequent reestimation step. In asimilar fashion to the combined conic and circular distance above we correct thecurvature bias by combining the algebraic distance with EOF12a to getEOF12b =qjQ(xj; yj)j(~a� a): (9)



British Machine Vision ConferenceThe iso-value contours (�gure 1i) are much improved, showing little curvature biasalthough there is signi�cant asymmetry.2.9 Angular bisector of lines to foci
F’ F

P(a) F’ F

Xj

Ij(b)Figure 2: Angular bisector of lines through Xj and the fociThe �nal distance approximation is based on the focal (reection) property ofellipses: the lines FP and F0P make equal angles with the tangent to the curveat the point P on the ellipse (�gure 2a). Thus the normal to the ellipse at P isthe angular bisector of FP and F0P. As shown in �gure 2b we approximate thenormal to the ellipse from Xj as the angular bisector of Xj F and Xj F0. It wouldbe expected to provide a good approximation for points close to the ellipse. We�nd the closest point of intersection Ij of the bisecting line with the ellipse, andtake the distance between Xj and IjEOF13 = Xj Ij : (10)As can be seen from the iso-value plot in �gure 1j this appears to provide a verygood approximate distance.For comparison, the more easily determined ray through Xj and the center ofthe ellipse is also considered. The distance from Xj to the closest point of inter-section between the ray and the ellipse was used by Nakagawa and Rosenfeld [5]as an EOF function. It can be seen from the resulting iso-value plot (�gure 1k)that EOF13 is considerably better.3 Assessment MeasuresDespite the variety of approximations to the distance from a point to the boundaryof an ellipse little comparative analysis has been carried out.3 Although visualisingthe iso-value contours is a useful tool for the qualitative analysis of EOFs, a quan-titative assessment would be valuable for objectively comparing them. We develop3Gross and Boult [4] experimentally evaluated four EOFs for superquadrics using graphi-cal plots comparing scaled summed EOF against the true RMS error, as well as showing onedimensional cross-sections of the errors of �t.



British Machine Vision Conferenceassessment measures based on the three factors of deviation from the Euclideandistance described above. One consideration is that the degree of deviation maynot be constant with increasing distance from the ellipse. Therefore it may benecessary to make the measures a function of the distances. Second, although weshow the measures applied to all values X = (x; y) in the R2 plane, in practice wemust discreetly sample a subset of R2. This leads to the problem of which subset?One solution is to assume a noise model which, given an ellipse, speci�es wherethe data is expected to occur. For instance, for noise with a Gaussian distributionN (0; �) we can weight the data in R2 byw(d) = 1�p2�e�d2=2�2where d is the Euclidean distance to the ellipse boundary.3.1 LinearityTo test for a linear relationship between the Euclidean distance values dX andtheir approximations eX it is natural to use the Pearson correlation coe�cient� = PX(eX � �eX)(dX � �dX)qPX(eX � �eX)2PX(dX � �dX)2 (11)The value of � lies between �1, although in our context negative values are unlikely,and we can think of � 2 [0; 1] with increasing values meaning a better linearcorrelation.A problem with (11) is that equidistant values further from the ellipse willhave greater e�ect on the measure than close values since as iso-value contoursbecome more distant from the ellipse they become longer. This can be compen-sated by weighting points in R2 by the length of the iso-value contour through thepoint. Since determining the length is not straightforward we take an alternativeapproach which is to sample a set of iso-value contours at regular intervals of thedistance approximation. The iso-value contour of the distance approximation atsome value4 Ei is at dXjeX = Ei, and the mean Euclidean distance along eachcontour is �i = E[dXjeX = Ei]: (12)The correlation coe�cient is then calculated between the iso-value values and theirEuclidean distance meansL = Piwi(Ei � �Ei)(�i � ��i)qPiwi(Ei � �Ei)2Piwi(�i � ��i)2 (13)Thus each distance is now given equal weight in the assessment measure. Inaddition we have included the term wi for each contour corresponding to theweighting factor associated with the noise model, where wi = w( ��i).4To avoid confusion we assume distances inside and outside the ellipse are signed, or can bemade so.



British Machine Vision Conference3.2 Curvature BiasTo measure the departure of the iso-value contour from the desired constant Eu-clidean distance we use the variance of the underlying Euclidean distance�2i = Var[dXjeX = Ei]: (14)Since this is a local measure it must be combined over contours to give a globalmeasure C =Xi wi�2i : (15)The ideal error of �t should have no curvature bias which is obtained when C = 0.3.3 AsymmetryAssuming signed distances, the mean Euclidean distances along correspondingiso-value contours inside and outside the ellipse are calculated�+i = E[dXjeX = Ei]��i = E[dXjeX = �Ei]:Asymmetry is calculated at each contour pair as the normalised di�erence in theirmean Euclidean distances. ai = j�+i � ��i j�+i + ��i :Again, a weighted sum of the local measures over the contours is made to producea global measure A =Xi wiai (16)which would equal zero for the ideal error of �t.3.4 Overall GoodnessRather than individually assess the three speci�c characteristics described abovesometimes it may be more convenient to produce a single overall assessment of thedistance approximations, ignoring the details. One approach would to produce aweighted sum of the three measures above. Instead we use an alternative whichavoids the need for deciding on suitable weights and use the squared di�erencebetween the approximation and the true Euclidean distanceG =XX wX(dX � SeX)2: (17)Since we can ignore uniform scalings of the distances we allow the approximationto be scaled by some constant S, and choose S so as to minimise G. This is foundwhen �G�S = 0, yielding S = PX wXeXdXPX wXe2X :



British Machine Vision Conference4 ResultsWe can now apply the assessment measures described in the previous section tothe EOF functions described in section 2. A quadrant of a single ellipse with semi-major axis a = 400 and semi-minor axis b = 100 and centred at the origin was used.The Euclidean distance was found by plotting the ellipse into an image followedby performing a Euclidean distance transform. The distance was made signed bysetting negative all non-zero distance values 4-way connected to the origin. TheEOFs were generated and sampled at unit increments in the quadrant 1000�300.Iso-value contours crossing the Y axis at 10 pixel intervals were detected, and theaverage and variance of the Euclidean distances (12) and (14) along the contourswere calculated.To simplify calculation of the measures and ensure uniform sampling, for boththe average and variance of the Euclidean distance values along the contours theEOF values were resampled at unit intervals using linear interpolation. It is thenstraightforward to �nd the corresponding points �+i and ��i .First we apply the assessment measures to EOF9 to determine a suitable valuefor p. The e�ects of p on the measures is graphed in �gure 3. Increasing p initiallyhas little e�ect on the linearity before it degrades from p � 0:4. There is a roughlylinear relationship between p and a reduction in curvature bias. Asymmetry de-grades with increasing p in a non-linear fashion. Combining all the factors in thesingle measure of goodness G, the optimal value is found at p � 0:45. This isthe value of p we have used when comparing the various techniques. If the severeasymmetry is ignored by using the G0 measure then the optimal value is p � 1 {i.e. EOF9 reduces to EOF2.
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British Machine Vision ConferenceTable 1: Normalised assessment results with N (0; 64) noise modelEOF L C A G G01 1.000 1.000 1.000 1.000 1.0002 0.877 0.041 8.404 2.771 0.0998 0.995 1.000 4.945 0.526 0.6669 0.995 0.452 4.500 0.391 0.44110 0.898 0.069 7.092 3.134 0.36211 1.003 0.230 12.507 0.617 0.27312b 0.990 0.035 3.508 0.425 0.16313 1.006 0.002 0.747 0.007 0.009References[1] G.J. Agin. Fitting ellipses and general second-order curves. Technical Report CMU-RI-TR-81-5, The Robotics Institute, Carnegie-Mellon University, Pittsburgh, USA,1981.[2] A. Albano. Representation of digitised contours in terms of conic arcs and straightline segments. CGIP, 5:23{33, 1974.[3] A.W. Fitzgibbon and R.B. Fisher. A buyer's guide to conic �tting. In BritishMachine Vision Conf., pages 513{522, 1995.[4] A.D. Gross and T.E. Boult. Error of �t for recovering parametric solids. In ICCV,pages 690{694, 1988.[5] Y. Nakagawa and A. Rosenfeld. A note on polygonal and elliptical approximationof mechanical parts. PR, 11:133{142, 1979.[6] V.S. Nalwa and E. Pauchon. Edgel aggregation and edge description. CVGIP,40:79{94, 1987.[7] T. Pavlidis. Curve �tting with conic splines. ACM Trans. on Graphics, 2(1):1{31,1983.[8] P.L. Rosin. A note on the least squares �tting of ellipses. PRL, 14:799{808, 1993.[9] P.L. Rosin. Assessing error of �t functions for ellipses. Technical Report CSTR-95-13, Department of Computer Science & Information Systems, Brunel University,1995.[10] R. Safaee-Rad, I. Tchoukanov, B. Benhabib, and K.C. Smith. Accurate parameterestimation of quadratic curves from grey level images. CVGIP: IU, 54:259{274,1991.[11] P.D. Sampson. Fitting conic sections to very scattered data. An iterative re�nementto the Bookstein algorithm. CVGIP, 18:97{108, 1982.[12] M. Stricker. A new approach for robust ellipse �tting. In Int. Conf. Automation,Robotics, and Computer Vision, pages 940{945, 1994.[13] G. Taubin. Estimation of planar curves, surfaces, and nonplanar space curves de�nedby implicit equations with applications to edge and range image segmentation. IEEETrans. PAMI, 13(11):1115{1138, 1991.


