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Abstract

In this paper we investigate the use of the Poisson model in the creation
and the description of binary textures, in conjunction with two forms of
image scanning, namely raster and Hilbert scan. We apply our model to
some binary random textures for which we estimate the Poisson parameters
using Maximum Likelihood Estimation and find that the values we obtain
are sufficiently distinct and sufficiently constant over the same texture, to
allow the use of this model in texture identification.

1 Introduction

One of the major topics in image processing is texture identification. The aim of
the work described in this paper is to investigate the properties of the Boolean
model for creating and describing textures. The model has been investigated
intensively from the theoretical point of view, but whether it could be used for
real texture images in practice, has not been established yet.

The simplest form of the Boolean model is the 1D version of it. As texture is
a spatial property, it is obvious that the most appropriate model for its descrip-
tion would be the 2D Boolean model, where a Poisson point process is used to
place randomly some primitive shapes described by parameters with prespecified
probability density functions. This approach, however, presents a chicken and egg
situation where one has to identify the texels, ie the primitive models, before the
modelling takes place. Thus, the approach does not seem easy to use. The 1D
model on the other hand is much more straightforward in its implementation and
use. To bypass the problem of dimensionality, and introduce some spatial property
to the model, we use it in conjunction with Hilbert scanning of the image.

The basic principles of the Boolean model are explained in section 2. In section
3 we shall briefly discuss the Hilbert scanning of a 2D array. In section 4 we shall
use the Boolean model in conjunction with both Hilbert and conventional raster
scanning to create some sample textures and thus explore the meaning of the two
model parameters in terms of texture appearance. In section 5 we shall describe
how the model was used to estimate the parameters of 10 different binary textures
and discuss how useful it is to discriminate these textures. We shall present our
conclusions in section 6.
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2 The one-dimensional Boolean model

The 2D Boolean random set model can be used for describing and creating texture
images. For this purpose, a texture is assumed to consist of a large number of cer-
tain primitive shapes. The Boolean model consists of two independent statistical
processes, a shape process and a Poisson point process. The outcomes of the shape
process determine the shapes of the primitives, and the outcomes of the Poisson
point process determine where these shapes appear. In a typical realization of a
Boolean model, shapes tend to overlap each other.

In the one-dimensional case, the shapes of the Boolean model are simply line
segments. For each segment the left end-point is considered to be the origin of the
shape. From this origin the shape is said to emanate to the right. Thus, in the 1D
Boolean model, a shape is completely identified by the length of the line segment
and the position of its origin.

The locations of the origins of the shapes in a Boolean model are the out-
comes of a Poisson point process with probability p. This probability is called the
marking probability and is one of the parameters of the Boolean model. The other
parameters describe the form of the shapes. In the one dimensional case, this is
just the length of the line segments, which are distributed according to some dis-
tribution function C'(k), k = 0,1,... . C(k) is the probability that a line segment
has length less than or equal to k:

C(k) = P(K < k), k=0,1,.. (1)

Because k is discrete, C(k) = ¢g + ¢1 + 2 + ... + ¢, where ¢; = P(K = i) is the
probability that a line segment has length 4, and C'(0) =0 [2].

The marking probability and the segment length distribution together form the
one-dimensional Boolean model. They can be combined to one expression for the
probability that a given line segment of length less than or equal to £ emanates
from a given point. This probability is given by the distribution function F'(k) [3]:

F(k) =1—p+pC(k), for k=0,1,... (2)

If F(k) = 0 then no line segment emanates from the concerning point. If F(k) =
i # 0 then that point is the origin of a line segment with length i. Usually the
segment length distribution is a function of a parameter, say 6. For a given segment
length distribution, the only parameters of the one dimensional Boolean model are
p and 6.

The Boolean model can be used either to create a texture image, or to describe
an existing texture.

3 Hilbert scanning of an image

If we create a 1D string of numbers, we can wrap it up to form an image, by
reading its values in a prespecified way. The most straightforward way is to use
it in a raster form where successive segments of a certain length are placed one
below another (horizontal raster) or one next to the other (vertical raster) to
form the image. In this case, however, the model applies only along the direction
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of wrapping, and it does not quantify the relationship between the neighbouring
pixels in the orthogonal to the raster direction. It is well known, however, that,
in the continuous case, a 1D curve can fill up a 2D space if the curve has fractal
dimension that approaches 2. In the discrete case of a lattice, we can use the
Hilbert scanning, which in effect keeps a curve for as long as possible in the vicinity
of a pixel, before it allows it to jump out of that neighbourhood [4, 5]. Such a
scanning of an image enhances the neighbourhood structure of the 1D curve. An
example of such scanning is shown in figure 1. In this paper, we shall use all three
types of scanning of an image: raster horizontal, raster vertical and Hilbert, in
order either to wrap a created string to form an image, or to scan a given image
to form a string from which we shall estimate the parameters of the image.

Figure 1: Hilbert scanning

4 Creating Boolean images

We used the model described in section 2 to create strings of length 16,384 pixels
for various parameter values. For all these strings, the black segment lengths were
assumed to be Poisson distributed:

k m
Cky=e">" % k=0,1,2.. (3)
m=0 '

Here, 6 is the parameter of the black segment length distribution, and denotes the
mean segment length. We then wrapped these strings either in raster format or
by Hilbert scanning to form 2D images 128 x 128 pixels in size.

Figure 2 shows the images created using the vertical raster as well as the Hilbert
scanning formats. The images obtained by horizontal raster format are not shown
as they are simply rotated versions of those shown at the top of figure 2.

Both parameters result in a darker image when they are increased. However,
increasing only the mean segment length results in a coarser image. As the marking
probability and the mean segment length increase, more line segments overlap,
leaving less uncovered pixels. Eventually, all line segments overlap resulting in a
completely black image.

From the distinct appearance of these two sets of images, we can see that the
parameter values by themselves are not enough to characterise a texture. So the
wrapping sequence is as important as the parameter values used. However, what
is important to note is that the raster format together with the parameter values
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are enough to create quite a range of binary textures, from strongly directional to
completely homogeneous. Clearly, one could also create directionality along the
diagonal orientation by raster scanning the lattice along that direction.

5 Characterising textures by the Boolean
parameters and the wrapping format

One question often asked about parametric models of texture, is whether the model
parameters characterise the texture uniquely. To answer that, after having created
a texture image with known parameters, we try to estimate these parameters. We
performed hundreds of experiments for this purpose, using the maximum likelihood
approach described in [2] and [3].
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Figure 3: Relative errors of the maximum likelihood estimates of the 1D Boolean
image created with p = 0.3 and € = 3.0 with different observation lengths.

Figure 4 shows some typical results of the accuracy with which the values of
the Boolean model could be defined by the above method, for various sizes of
the sequence used. At first sight these results seem rather disappointing as the
parameters recovered are typically 50% or 30% wrong. It seems that unless we
have a good parameter estimation method, we cannot use these parameter values.
The uncertainty clearly arises from the fact that there are more than one options
by which a certain sequence can arise since when the sequence is created, if a pixel
is already black due to a large segment placed earlier, its value does not change
when a closer neighbouring pixel becomes the origin of a new black segment. It
is this irreversible non-linear step in the creation of these images that prevents us
from recovering the parameters of the process exactly. The Boolean image with
p = 0.5 and # = 8.0 has so few white pixels, that only one observation contains
enough black and white run-lengths to base a reliable estimation on.

However, the exact recovery of the parameters of the process, is probably the
wrong question to be asking. Images, even binary textures, are not expected to
adhere really to the Boolean model. The Boolean model, just like any other model,
should simply be considered as yet another reference configuration which can be
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used to describe the data in some way. So, in a highly dimensional hyper-space
where an image can be represented by a point, the use of a model is nothing else
than the creation of some landmark points which can be used to tessellate the space
in classes. As long as this tesselation corresponds to the tesselation obtained by
using real images, the model is adequate for texture classification. Thus, we should
view the process of estimating the Boolean model parameters of a binary texture
as yet another way of producing features of this texture and the questions that
we should be asking are the following: “How stable these features are for different
realizations of the same texture?” and “Are they useful texture classifiers, by
differing significantly more between the realizations of different textures than they
differ between the realizations of the same texture?”

To answer the above two questions we chose 9 textures from [1] and we digitised
them. The textures were chosen to be binary, stochastic or semi-stochastic and as
representative as possible. There were among them some pairs of similar textures,
as well as homogeneous and directional textures. Each image was digitised to
a 256 x 256 size, and it was scanned in three different ways: Raster horizontal,
raster vertical and Hilbert. Each time the Boolean parameters of the string created
were estimated using the maximum likelihood estimation. Then each image was
divided in four quarters and the parameters for each sub-image were estimated
using again the three different scans. This was done so that we had more than
one realizations of each texture. The mean and the standard deviation of each
set, of five parameters estimated were computed, and used as an indication of the
expected parameter value and its stability over different realizations of the same
texture.

The images with the calculated parameter values are presented in figures 4 to

From the results presented in figures 4 to 6, we can see that the parameters
calculated are quite stable over the realizations of the same texture and their
difference from one texture to the next, even for similar textures is outside the
range of their variation over the same texture. It seems therefore, from these
results that the Boolean model in conjunction with the three modes of image
scanning can be used for the classification of binary textures, to the extent that
the textures used in our experiments are representative.
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Figure 4: Some binary textures and their corresponding Boolean parameters
estimated from the full image and its four quadrants separately.
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Figure 5: Some binary textures and their corresponding Boolean parameters
estimated from the full image and its four quadrants separately.
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Figure 6: Some binary textures and their corresponding Boolean parameters
estimated from the full image and its four quadrants separately.
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6 Discussion and conclusions

We have explored here the use of 1D Boolean model to describe binary textures.
We have combined it with the Hilbert scanning of images to introduce some 2D
properties to it. We have shown that according to the scanning format, the same
model can produce very different looking textures. Thus, we advocate the use of
several scanning formats to calculate the parameters of this model that can be
used as texture descriptors.

Imposing a 1D model on a 2D image to describe a 2D property like texture,
may seem ad hoc and wrong. However, although texture as perceived by the
human eye is a spatial property, the image creating the perceived impression does
not cease to be a signal and the issue is whether we can discriminate between
these signals that could give rise to different textural perceptions when they are
sequentially read into a lattice in certain ways. Thus, the models we use to describe
textures are only seed points used in the hyper-space where we have as many axes
as we have pixels in an image, and each image is nothing more than a point.
When a new model is used, the relevant question to be asked is whether the
versions of the model obtained by various combinations of its parameters impose
a Delaunay tesselation of the hyper-space of textures so that in each cell only
one texture is found. We have attempted to partially answer this question by
considering 5 different realizations of the same texture, 9 different representative
textures and calculated their parameters. Our preliminary results presented here,
show that the intraclass variation of the parameters estimated is smaller than the
interclass variations. This encourages us to investigate this approach further. In
particular, we plan to investigate the stability of the parameters calculated when
the realizations of each texture are restricted to sub-images of 20 x 20 or even
10 x 10 pixels in order to check the feasibility of using these parameters for texture
segmentation as opposed to just for texture classification.
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