
Document Feature Recognition using amesh of Associative MemoriesS. E. M. O'Keefe�, J. AustinyAdvanced Computer Architecture GroupDepartment of Computer ScienceUniversity of YorkHeslingtonYork YO1 5DDAbstractThis paper describes a new approach to the problem of identi�cation of com-plex objects in document images. The novelty of the approach lies in its useof a distributed representation for objects which seeks to overcome some ofthe problems of data noise and incompleteness. Objects are modelled as aset of features and the relationship between neighbouring features. Featurerecognition is performed by a mesh of associative memories. Each feature inthe image stimulates recall from an associative memory of the other local fea-tures. Evidence is accumulated locally, and the most likely label is assignedto each feature. The associative memories then communicate to update thelabels synchronously until a stable, locally consistent labelling of image fea-tures is obtained. Thus, incomplete image data may lead to recognition andrecall of a complete object in a translation-invariant, robust manner. Theconsistency requirement e�ectively suppresses noise, signi�cantly reducingthe false positive rate. The architecture is designed for analysis of large bin-ary images, for example fax images (typically 1143�1728 pixels). The meshof associative memories is ideal for parallel implementation.1 IntroductionIdenti�cation of complex objects in images is a problem which is at the heart ofimage analysis and computer vision [1, 2]. It is an essential ingredient of documentimage analysis, a �eld which has been studied extensively from the point of view ofthe identi�cation of low level features [3, 4, 5, 6, 7, 8], and from the point of view ofidenti�cation of structure within documents from the complex objects which havebeen identi�ed in the image [9, 10, 11, 12]. However, the typical approach is toidentify the areas which contain the text of a document, and segment these, applysome OCR technique and store the resulting text as ASCII characters, while therest of the document is discarded or stored as images without further attention tothe content. Thus little attempt is made to make use of the information which may�sok@minster.york.ac.ukyaustin@minster.york.ac.uk
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be present in the \non-text" areas of a document image, such as logos, trademarks,etc. The main di�culties in making use of the non-textual data in the image lies inthe wide range of forms which it may take, and the computational requirement ofidentifying large components of the image (of the order of 1002 pixels) by matchingthem against a database which may contain hundreds of models. This task isfurther complicated by noise in the image, and incompleteness of the objects tobe identi�ed. In previously reported work [13, 14, 15, 16], we have described abasic approach to the solution of these problems, involving the application of atechnique similar to the Generalised Hough Transform (GHT).The GHT [17, 18] is an analysis technique which relies on the accumulation ofevidence for objects in an image via the association of object features with a set ofparameters describing the object. The e�ectiveness of the GHT is limited by thesize of the accumulators required (and therefore the amount of memory required)and problems with feature extraction and quantisation [19]. The main di�cultiesstem from inaccurate feature estimation and spurious features generated by noisein the image.The GHT is an attractive algorithm for image analysis because it uses lowlevel feature information in the detection of large scale, complex objects, bringingthe information together in parameter space to provide an estimate of the classof object present. In the usual GHT, the feature information is transformed intoa single point or block of points in parameter space, and it is the accumulationof these points which indicates the maximum likelihood for the object parametervalues. This translation from feature space into parameter space removes anyreliance on the connectedness of object edge elements, making the technique morerobust that segmentation techniques which rely on edge-detection (for example[20]). However, when we have a large database of models against which we wishto match the data in the image, the GHT presents a computational problem.A separate parameter space for each class of objects would require a prohibitiveamount of memory. The work described in [13, 14, 15, 16] presented a method forovercoming this problem, by using a compact coding for feature and object labels,and a mesh of associative memories for performing recall without a linear searchof the object space. The basic architecture was described in [13], and the ability ofthe architecture to detect multiple instances of objects in an image, and to detectobjects with added noise, was demonstrated in [14, 15, 16]. However, the overallperformance in terms of the fraction of objects correctly recognised was adverselya�ected by quite low levels of noise, and objects of di�erent sizes could not bereliably detected. The present paper focusses on the quanti�cation of performance,and on the improvements in performance delivered by the modi�cations describedhere.One of the problems encountered when applying an evidence accumulationscheme to the identi�cation of an object with one of a large number of di�erentclasses, each of which has a di�erent amount of \evidence" in the form of com-ponent features, is that the amount of evidence required to be con�dent of anassignment to a particular class is dependent on the class itself. This problemhas been addressed in the work described here by the addition of the necessaryinformation to the object model. Also, the generation of a single most probablevalue for object parameters discards much of the information present in the image
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in the form of the parameters of features making up the object. This has beenaddressed by implementing a modi�cation to the GHT whereby subunits of theobject are matched against the models, adjacent subunits communicating inform-ation about the probable feature and object classes. Feature and object labels aresynchronously updated until a stable, locally consistent labelling is obtained.We are particularly interested in the application of the recogniser to the ana-lysis of document facsimile images. That is, we are interested in the segmentationof the fax into its components, the identi�cation of each component, and the de-termination of the structural relationship between each of the components. Faximages have their own particular characteristics which need to be addressed, par-ticularly their size and the characteristics of the noise generated by the scanningand transmission processes. Baird [7] has done work to characterise the noisewhich plagues scanned documents, and we have examined performance against asubset of the sources of noise appropriate to fax images.The outline of this paper is as follows. In section 2, the architecture of theobject recogniser is outlined. Section 2.1 brie
y describes the GHT, and section 2.2details the modi�cations used to overcome the problems inherent with the basicmethod. In section 3, the results of experiments are presented indicating theire�ect on object recognition. Finally, section 4 o�ers some conclusions.2 ImplementationIn this section, we give a brief description of the Generalised Hough Transformwhich forms the basis for the object recogniser. We then describe the enhancementsto the basic system which allow for the recognition of multiple classes of objectssimultaneously, and which improve the ability of the system to identify objects inthe presence of noise. Details of the implementation of the basic recogniser aregiven in [13].2.1 Generalised Hough TransformThe implementation of the recogniser is based on the GHT[17], which is brie
ydescribed here. The GHT provides, for each class of objects, a template in theform of parameters relating each feature to a reference point for the object. Whena feature is detected in an image, a look-up is performed to �nd out which objectsthe feature may be a part of, and, for these objects, the position of the objectcentre relative to the feature. This information is then used to update counts ofthe number of features which have \voted" for an object centre at each point inthe image. This is illustrated in �gure 1. The system has been trained to recogniseobject classes L1 and L2. A feature is detected at position f. This feature maybe part of either L1 or L2. From the look-up we recall that the centre for objectL1 should be at position v1 relative to the feature, and object L2 should be atposition v2. We cast a vote for an instance of the object L1 at f+v1, and a votefor L2 at f+v2.Peaks in the number of votes accumulated correspond to the position of ob-jects. The advantage of the GHT over other template based methods is that, inorder to recognise an object which is large relative to the image, we only need to
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vectorFigure 1: Principle of the GHT. The object is parameterised in terms of vectors betweeneach feature and an object reference point. This can be visualised in image space as thefeature casting a vote at the location of the object reference point.recognise the individual features of the object (a much easier task than attemptingto recognise the whole object) and accumulate the evidence from all the features.We are also able to recognise objects which are occluded, because the featureswhich are visible will still vote together for the object. The recognition of theobject is translation invariant.2.2 Extensions to the basic systemThe basic GHT as described above brings together all information from the fea-tures to a single point. When parts of the image are unclear because of noise orocclusion, the response of the GHT is reduced, and we have a lower con�dencein the labelling of objects. However, when parts of the image are very clear andwe can be very con�dent in their identi�cation, we would like to use this inform-ation to make predictions about the parts of the object which are unclear, andto increase the overall con�dence in the labelling of objects. We have modi�edthe GHT algorithm to recall a distributed representation of the object, in whicheach feature is associated with its neighbouring features. E�ectively, each groupof features is recognised independently at �rst.Instead of voting at a single point in parameter space representing the object(in our case the position and class of the object), each feature votes for the set offeatures which are close to it in parameter space. Here, this corresponds to featureswhich are close to it in image space. The set of features which are voted for isde�ned by the size of the \local support neighbourhood" (LSN). Thus, a set offeatures which comprise an object and which are in the correct spatial relationshipwill all support each other. The votes accumulated for each feature are thresholdedto determine the most likely label for each feature. The threshold appropriate foreach feature depends of the context in which it occurs. That is, the structure ofthe objects of which the feature is a part will determine how many votes will becast for each feature, from the number of features within each LSN. Object classes
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are accumulated in parallel with features, and are used to provide the contextfor the feature. An associative memory is used to learn the correct threshold foreach feature in each context. This use of feature-speci�c thresholding is novelwithin the context of the GHT. The principle is illustrated in �gure 2. The objectis represented by the line features (outlined by solid boxes), and these interactthrough their LSN (outlined by dotted boxes). Only those features which fall withthe LSN will in
uence another feature directly.

Feature and LSN

Features vote for each other within LSNFigure 2: Principle of Local Support NeighbourhoodsThis process gives an initial labelling to the features in the image. This labellingof features is then treated as a set of features, each of which votes for other featureswithin the LSN. This information is used to modify the labels assigned to features(in e�ect , by propagation of labels between local support neighbourhoods), andthe process continues until a stable, consistent labelling of the features is obtained.Updates of labels in the accumulator are performed synchronously. Stability is de-termined by comparison of label states before and after update. Local consistencyis assured by the interaction of features within the LSN. Globally, there may beany number of pockets of consistency each of which corresponds to an object orpart of an object.3 ExperimentsThis section describes the experiments used to examine the e�ects of the modi-�cations on the performance of the recogniser, compared to an implementation ofthe GHT algorithm.For testing purposes, synthetic images have been generated from componentsof original fax images. Objects to be detected have been added to (generally noisy)backgrounds, and then further noise added on top of the image. The locations ofthe objects in the synthetic images are recorded so that detection of the objectsat the correct position may be automatically veri�ed. Four di�erent types of noisetypical of fax images were added to the images at varying levels: (a) random noise {pixels are randomly set to black in the test image, (b) line-blanking noise { pixelsare randomly selected as noise pixels, and any line containing noise is blanked
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from the point of error, (c) line-dropout noise { pixels are randomly selected asnoise pixels, and any line containing noise is removed from the image, and (d)morphological noise { black pixels are randomly selected as noise pixels, and amorphological dilation operator applied.For each test image analysed, an image of the detected features and corres-ponding object classes is built up. Groups of consistent features represent objects(or parts of objects). When the size of such a group relative to the size of theobject exceeds a threshold, and the object is at the correct position, a detectionis counted.3.1 Initial GHT implementation resultsThe GHT has been implemented as described in [13], and recognition performancehas been tested against a portfolio of synthetic test images generated as describedabove. The results are shown in �gure 3. Each point is the result of �fty tests ondi�erent combinations of image and noise. For each class of noise, the recognitionrate is plotted as a function of the additive noise density. Even with no added noise,the recognition results are not perfect. This can in part be explained by the imagesynthesis process, which adds the test object to a noisy background and thereforemakes recognition more di�cult, and in part by the e�ects of sub-sampling theimage features and the e�ect of sampling alignment on spreading votes through theaccumulator. Additionally, where more than one object is present in the image,the thresholding process will return only the largest object.
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Figure 3: Variation of recognition rate with noise density (GHT system)As the amount of noise added to the image is increased, the recognition ratedecreases as expected. The di�erent types of noise have a greater or lesser e�ect
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Figure 4: Variation of recognition rate with noise density (LSN system)on the recognition rate. Unsurprisingly, the greatest e�ect is from line-dropoutnoise, which distorts the image. The greatest tolerance is shown for line-blankingnoise, where a line with an error is blanked out from the point of error. At thezero noise level, the false positive rate for the image set was about �ve per image.3.2 Modi�ed GHT results (LSN)The addition of the feature-speci�c thresholding had the desired e�ect of makingpossible the detection of multiple classes of objects with varying number so fea-tures. Whereas before, the original thresholding process only returned the largestobjects, use of the modi�ed thresholding enabled the location of all object in theimageRecognition performance of the system with the addition of the local supportneighbourhoods has been tested using the same portfolio of test images as wasused in testing the original system, with the same schedule for addition of noiseto the image. The results of the experiments are shown in �gure 4.As can be seen, the performance of the system on images with no added noise ismuch higher that in the original system. This can be explained by the ability of thesystem to locate and identify sub-objects with con�dence and use this informationto assist in identifying the rest of the object. As before, the addition of noise invarious amounts degrades the performance of the system, and the e�ects of thedi�erent types of noise are broadly similar to the those described in the previoussection. Table 1 summarises the noise performance in terms of the level of addednoise required to reduce the recognition rate to twenty percent. As can be seenfrom the �gures, the increased performance at low noise levels has been traded atthe expense of no increase in robustness at increased noise levels. The false positive
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rate has however been reduced to about 0.05 per image, a signi�cant reduction.Noise source GHT LSNRandom 9% 12%Line Blanking > 30% >> 30%Line Dropout 8% 6%Morphological 18% 13%Table 1: Noise levels which decay recognition rate to 20%3.3 E�ect of neighbourhood sizeThe size of the local neighbourhood a�ects the ability of the recognition systemto reject noise. With the minimum neighbourhood size, each feature in the imageis treated independently, and there is no gain in recognition rate. As the sizeof the neighbourhood is increased, each feature is in
uenced by those featuressurrounding it, and feature labels which are inconsistent with the rest of the objectare detected and modi�ed. With further increases in neighbourhood size, theamount of this contextual evidence increases. However, as the neighbourhoodexpands the likelihood of inclusion of non-object features increases. These featureswill tend to dilute the e�ect of the context information. Thus, we would expectthe recognition rate to increase with neighbourhood size rapidly at �rst, and thenlevel o�.Figure 5 shows the results of experiments in which the system was trained torecognise a set of objects. The system was retrained a number of times, usinga di�erent neighbourhood size each time. The neighbourhoods used are square,and the size of the neighbourhood is measure in terms of the number of featuresover which the in
uence extends away from the centre. Thus, a neighbourhood ofsize �ve may be envisioned as a square of side eleven, centred on the feature (theuse of square neighbourhoods is for convenience, and not a theoretical restriction).The recognition rate for the system was measured on a set of synthetic test imageswith a �xed amount of morphological noise (5%). As expected, the recognition ratedoes initially increase as the neighbourhood size increases, followed by a levelling-o�. The maximum recognition rate appears to occur for a neighbourhood size of5, although for this relatively small test set, random variations may mask furtherincreases in recognition rate. From a computational perspective, the optimum gridsize is selected by trading recognition rate for speed. The computation requiredincreases as a function of the neighbourhood size, making larger neighbourhoodsunattractive.4 Conclusions and summaryWe have described a new approach to the problem of identi�cation of complexobjects in document images. The novelty of the approach lies in its use of a
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Variation of recognition rate with local neigbourhood size
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