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Abstract

This paper describes a new approach to the problem of identification of com-
plex objects in document images. The novelty of the approach lies in its use
of a distributed representation for objects which seeks to overcome some of
the problems of data noise and incompleteness. Objects are modelled as a
set of features and the relationship between neighbouring features. Feature
recognition is performed by a mesh of associative memories. Each feature in
the image stimulates recall from an associative memory of the other local fea-
tures. Evidence is accumulated locally, and the most likely label is assigned
to each feature. The associative memories then communicate to update the
labels synchronously until a stable, locally consistent labelling of image fea-
tures is obtained. Thus, incomplete image data may lead to recognition and
recall of a complete object in a translation-invariant, robust manner. The
consistency requirement effectively suppresses noise, significantly reducing
the false positive rate. The architecture is designed for analysis of large bin-
ary images, for example fax images (typically 1143 x 1728 pixels). The mesh
of associative memories is ideal for parallel implementation.

1 Introduction

Identification of complex objects in images is a problem which is at the heart of
image analysis and computer vision [1, 2]. Tt is an essential ingredient of document
image analysis, a field which has been studied extensively from the point of view of
the identification of low level features [3, 4, 5, 6, 7, 8], and from the point of view of
identification of structure within documents from the complex objects which have
been identified in the image [9, 10, 11, 12]. However, the typical approach is to
identify the areas which contain the text of a document, and segment these, apply
some OCR technique and store the resulting text as ASCII characters, while the
rest of the document is discarded or stored as images without further attention to
the content. Thus little attempt is made to make use of the information which may
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be present in the “non-text” areas of a document image, such as logos, trademarks,
etc. The main difficulties in making use of the non-textual data in the image lies in
the wide range of forms which it may take, and the computational requirement of
identifying large components of the image (of the order of 1002 pixels) by matching
them against a database which may contain hundreds of models. This task is
further complicated by noise in the image, and incompleteness of the objects to
be identified. In previously reported work [13, 14, 15, 16], we have described a
basic approach to the solution of these problems, involving the application of a
technique similar to the Generalised Hough Transform (GHT).

The GHT [17, 18] is an analysis technique which relies on the accumulation of
evidence for objects in an image via the association of object features with a set of
parameters describing the object. The effectiveness of the GHT is limited by the
size of the accumulators required (and therefore the amount of memory required)
and problems with feature extraction and quantisation [19]. The main difficulties
stem from inaccurate feature estimation and spurious features generated by noise
in the image.

The GHT is an attractive algorithm for image analysis because it uses low
level feature information in the detection of large scale, complex objects, bringing
the information together in parameter space to provide an estimate of the class
of object present. In the usual GHT, the feature information is transformed into
a single point or block of points in parameter space, and it is the accumulation
of these points which indicates the maximum likelihood for the object parameter
values. This translation from feature space into parameter space removes any
reliance on the connectedness of object edge elements, making the technique more
robust that segmentation techniques which rely on edge-detection (for example
[20]). However, when we have a large database of models against which we wish
to match the data in the image, the GHT presents a computational problem.
A separate parameter space for each class of objects would require a prohibitive
amount of memory. The work described in [13, 14, 15, 16] presented a method for
overcoming this problem, by using a compact coding for feature and object labels,
and a mesh of associative memories for performing recall without a linear search
of the object space. The basic architecture was described in [13], and the ability of
the architecture to detect multiple instances of objects in an image, and to detect
objects with added noise, was demonstrated in [14, 15, 16]. However, the overall
performance in terms of the fraction of objects correctly recognised was adversely
affected by quite low levels of noise, and objects of different sizes could not be
reliably detected. The present paper focusses on the quantification of performance,
and on the improvements in performance delivered by the modifications described
here.

One of the problems encountered when applying an evidence accumulation
scheme to the identification of an object with one of a large number of different
classes, each of which has a different amount of “evidence” in the form of com-
ponent features, is that the amount of evidence required to be confident of an
assignment to a particular class is dependent on the class itself. This problem
has been addressed in the work described here by the addition of the necessary
information to the object model. Also, the generation of a single most probable
value for object parameters discards much of the information present in the image
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in the form of the parameters of features making up the object. This has been
addressed by implementing a modification to the GHT whereby subunits of the
object are matched against the models, adjacent subunits communicating inform-
ation about the probable feature and object classes. Feature and object labels are
synchronously updated until a stable, locally consistent labelling is obtained.

We are particularly interested in the application of the recogniser to the ana-
lysis of document facsimile images. That is, we are interested in the segmentation
of the fax into its components, the identification of each component, and the de-
termination of the structural relationship between each of the components. Fax
images have their own particular characteristics which need to be addressed, par-
ticularly their size and the characteristics of the noise generated by the scanning
and transmission processes. Baird [7] has done work to characterise the noise
which plagues scanned documents, and we have examined performance against a
subset of the sources of noise appropriate to fax images.

The outline of this paper is as follows. In section 2, the architecture of the
object recogniser is outlined. Section 2.1 briefly describes the GHT, and section 2.2
details the modifications used to overcome the problems inherent with the basic
method. In section 3, the results of experiments are presented indicating their
effect on object recognition. Finally, section 4 offers some conclusions.

2 Implementation

In this section, we give a brief description of the Generalised Hough Transform
which forms the basis for the object recogniser. We then describe the enhancements
to the basic system which allow for the recognition of multiple classes of objects
simultaneously, and which improve the ability of the system to identify objects in
the presence of noise. Details of the implementation of the basic recogniser are
given in [13].

2.1 Generalised Hough Transform

The implementation of the recogniser is based on the GHT[17], which is briefly
described here. The GHT provides, for each class of objects, a template in the
form of parameters relating each feature to a reference point for the object. When
a feature is detected in an image, a look-up is performed to find out which objects
the feature may be a part of, and, for these objects, the position of the object
centre relative to the feature. This information is then used to update counts of
the number of features which have “voted” for an object centre at each point in
the image. This is illustrated in figure 1. The system has been trained to recognise
object classes L1 and L2. A feature is detected at position f. This feature may
be part of either L1 or L2. From the look-up we recall that the centre for object
L1 should be at position v1 relative to the feature, and object L2 should be at
position v2. We cast a vote for an instance of the object L1 at f+v1, and a vote
for L2 at f4v2.

Peaks in the number of votes accumulated correspond to the position of ob-
jects. The advantage of the GHT over other template based methods is that, in
order to recognise an object which is large relative to the image, we only need to
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Figure 1: Principle of the GHT. The object is parameterised in terms of vectors between
each feature and an object reference point. This can be visualised in image space as the
feature casting a vote at the location of the object reference point.

recognise the individual features of the object (a much easier task than attempting
to recognise the whole object) and accumulate the evidence from all the features.
We are also able to recognise objects which are occluded, because the features
which are visible will still vote together for the object. The recognition of the
object is translation invariant.

2.2 Extensions to the basic system

The basic GHT as described above brings together all information from the fea-
tures to a single point. When parts of the image are unclear because of noise or
occlusion, the response of the GHT is reduced, and we have a lower confidence
in the labelling of objects. However, when parts of the image are very clear and
we can be very confident in their identification, we would like to use this inform-
ation to make predictions about the parts of the object which are unclear, and
to increase the overall confidence in the labelling of objects. We have modified
the GHT algorithm to recall a distributed representation of the object, in which
each feature is associated with its neighbouring features. Effectively, each group
of features is recognised independently at first.

Instead of voting at a single point in parameter space representing the object
(in our case the position and class of the object), each feature votes for the set of
features which are close to it in parameter space. Here, this corresponds to features
which are close to it in image space. The set of features which are voted for is
defined by the size of the “local support neighbourhood” (LSN). Thus, a set of
features which comprise an object and which are in the correct spatial relationship
will all support each other. The votes accumulated for each feature are thresholded
to determine the most likely label for each feature. The threshold appropriate for
each feature depends of the context in which it occurs. That is, the structure of
the objects of which the feature is a part will determine how many votes will be
cast for each feature, from the number of features within each LSN. Object classes
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are accumulated in parallel with features, and are used to provide the context
for the feature. An associative memory is used to learn the correct threshold for
each feature in each context. This use of feature-specific thresholding is novel
within the context of the GHT. The principle is illustrated in figure 2. The object
is represented by the line features (outlined by solid boxes), and these interact
through their LSN (outlined by dotted boxes). Only those features which fall with
the LSN will influence another feature directly.

= = Features vote for each other within LSN
O Feature and LSN

Figure 2: Principle of Local Support Neighbourhoods

This process gives an initial labelling to the features in the image. This labelling
of features is then treated as a set of features, each of which votes for other features
within the LSN. This information is used to modify the labels assigned to features
(in effect , by propagation of labels between local support neighbourhoods), and
the process continues until a stable, consistent labelling of the features is obtained.
Updates of labels in the accumulator are performed synchronously. Stability is de-
termined by comparison of label states before and after update. Local consistency
is assured by the interaction of features within the LSN. Globally, there may be
any number of pockets of consistency each of which corresponds to an object or
part of an object.

3 Experiments

This section describes the experiments used to examine the effects of the modi-
fications on the performance of the recogniser, compared to an implementation of
the GHT algorithm.

For testing purposes, synthetic images have been generated from components
of original fax images. Objects to be detected have been added to (generally noisy)
backgrounds, and then further noise added on top of the image. The locations of
the objects in the synthetic images are recorded so that detection of the objects
at the correct position may be automatically verified. Four different types of noise
typical of fax images were added to the images at varying levels: (a) random noise —
pixels are randomly set to black in the test image, (b) line-blanking noise — pixels
are randomly selected as noise pixels, and any line containing noise is blanked
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from the point of error, (c) line-dropout noise — pixels are randomly selected as
noise pixels, and any line containing noise is removed from the image, and (d)
morphological noise — black pixels are randomly selected as noise pixels, and a
morphological dilation operator applied.

For each test image analysed, an image of the detected features and corres-
ponding object classes is built up. Groups of consistent features represent objects
(or parts of objects). When the size of such a group relative to the size of the
object exceeds a threshold, and the object is at the correct position, a detection
is counted.

3.1 Initial GHT implementation results

The GHT has been implemented as described in [13], and recognition performance
has been tested against a portfolio of synthetic test images generated as described
above. The results are shown in figure 3. Each point is the result of fifty tests on
different combinations of image and noise. For each class of noise, the recognition
rate is plotted as a function of the additive noise density. Even with no added noise,
the recognition results are not perfect. This can in part be explained by the image
synthesis process, which adds the test object to a noisy background and therefore
makes recognition more difficult, and in part by the effects of sub-sampling the
image features and the effect of sampling alignment on spreading votes through the
accumulator. Additionally, where more than one object is present in the image,
the thresholding process will return only the largest object.
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Figure 3: Variation of recognition rate with noise density (GHT system)

As the amount of noise added to the image is increased, the recognition rate
decreases as expected. The different types of noise have a greater or lesser effect
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Figure 4: Variation of recognition rate with noise density (LSN system)

on the recognition rate. Unsurprisingly, the greatest effect is from line-dropout
noise, which distorts the image. The greatest tolerance is shown for line-blanking
noise, where a line with an error is blanked out from the point of error. At the
zero noise level, the false positive rate for the image set was about five per image.

3.2 Modified GHT results (LSN)

The addition of the feature-specific thresholding had the desired effect of making
possible the detection of multiple classes of objects with varying number so fea-
tures. Whereas before, the original thresholding process only returned the largest
objects, use of the modified thresholding enabled the location of all object in the
image

Recognition performance of the system with the addition of the local support
neighbourhoods has been tested using the same portfolio of test images as was
used in testing the original system, with the same schedule for addition of noise
to the image. The results of the experiments are shown in figure 4.

As can be seen, the performance of the system on images with no added noise is
much higher that in the original system. This can be explained by the ability of the
system to locate and identify sub-objects with confidence and use this information
to assist in identifying the rest of the object. As before, the addition of noise in
various amounts degrades the performance of the system, and the effects of the
different types of noise are broadly similar to the those described in the previous
section. Table 1 summarises the noise performance in terms of the level of added
noise required to reduce the recognition rate to twenty percent. As can be seen
from the figures, the increased performance at low noise levels has been traded at
the expense of no increase in robustness at increased noise levels. The false positive
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rate has however been reduced to about 0.05 per image, a significant reduction.

|Noise source | GHT | LSN |

Random 9% 12%
Line Blanking | > 30% | >> 30%
Line Dropout 8% 6%
Morphological | 18% 13%

Table 1: Noise levels which decay recognition rate to 20%

3.3 Effect of neighbourhood size

The size of the local neighbourhood affects the ability of the recognition system
to reject noise. With the minimum neighbourhood size, each feature in the image
is treated independently, and there is no gain in recognition rate. As the size
of the neighbourhood is increased, each feature is influenced by those features
surrounding it, and feature labels which are inconsistent with the rest of the object
are detected and modified. With further increases in neighbourhood size, the
amount of this contextual evidence increases. However, as the neighbourhood
expands the likelihood of inclusion of non-object features increases. These features
will tend to dilute the effect of the context information. Thus, we would expect
the recognition rate to increase with neighbourhood size rapidly at first, and then
level off.

Figure 5 shows the results of experiments in which the system was trained to
recognise a set of objects. The system was retrained a number of times, using
a different neighbourhood size each time. The neighbourhoods used are square,
and the size of the neighbourhood is measure in terms of the number of features
over which the influence extends away from the centre. Thus, a neighbourhood of
size five may be envisioned as a square of side eleven, centred on the feature (the
use of square neighbourhoods is for convenience, and not a theoretical restriction).
The recognition rate for the system was measured on a set of synthetic test images
with a fixed amount of morphological noise (5%). As expected, the recognition rate
does initially increase as the neighbourhood size increases, followed by a levelling-
off. The maximum recognition rate appears to occur for a neighbourhood size of
5, although for this relatively small test set, random variations may mask further
increases in recognition rate. From a computational perspective, the optimum grid
size is selected by trading recognition rate for speed. The computation required
increases as a function of the neighbourhood size, making larger neighbourhoods
unattractive.

4 Conclusions and summary

We have described a new approach to the problem of identification of complex
objects in document images. The novelty of the approach lies in its use of a
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Figure 5: Variation of recognition rate with local neighbourhood size (LSN system)

distributed representation for objects which seeks to overcome some of the prob-
lems of data noise and incompleteness. Objects are modelled as a set of features
and the relationship between neighbouring features. Each feature in the image
stimulates recall from an associative memory of the other features within its local
neighbourhood. Feature labels are accumulated locally, and the most likely label
is assigned to each feature. The process then updates the labels synchronously
until a stable, locally consistent labelling of the image features is obtained. Thus,
incomplete image data may lead to recognition and recall of a complete object in
translation-invariant, robust manner.
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