
Steering and Navigation Behavioursusing FixationDavid W. Murray, Ian D. Reid and Andrew J. DavisonDepartment of Engineering Science, University of Oxford,Parks Road, Oxford, OX1 3PJ, U.K.email: [dwm, ian, ajd]@robots.ox.ac.ukAbstractSteering a motor vehicle around a winding but otherwise uncluttered roadhas been observed by Land and Lee (1994) to involve repeated periods ofvisual �xation upon the tangent point of the inside of each bend. We demon-strate a similar use of `active' �xation in the autonomous navigation of arobot vehicle around an obstacle, and show how the control law devised forsteering in the robotic example is applicable to the observed human perfor-mance data. We discuss the merits of �xation for mobile robot localization.1 IntroductionIn active machine vision [1, 2], visual feedback is used to control not only thephysical parameters of a camera or cameras | most importantly their directionof gaze or focus of attention | but also how the resulting imagery is processedfrom frame to frame. The aim is to construct a set of `visual behaviours' in whichsensing and perception are tightly coupled to speci�c robotic actions, and thenceto enable them to interact (eg [4]).In this paper we �rst describe a visual behaviour which steers a robot vehiclearound an obstacle, using a rule derived from the angle between the direction ofgaze and the direction of translation of the vehicle.The example is illustrative for three reasons. First, it provides a clear-cutdemonstration of the way that active �xation can obviate the need for relativelycomplicated visual processing | here we need only perform a simple correspon-dence at the image centre instead of having to compute optical 
ow. Secondly, itindicates how the loss in visual information is replaced by proprioceptive data fromencoders on the head. Thirdly, a natural example of the same visual behaviourhas been observed by Land and Lee [6], who measured the relationship between ahuman driver's gaze direction and steering response while negotiating a twistingroad. Land and Lee found that driving around a bend involved repeated periods of�xation along tangents to the inside kerb, and that the angle between the headingand the direction of gaze was highly correlated with the steering response, thelatter measured by the angle to which the steering wheel was turned. We returnto their data in discussion.In the penultimate section we describe progress on a second behaviour usingactive �xation to localize a vehicle.
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British Machine Vision Conference2 MethodThe electromechanical stereo head used in the work is mounted at the front ofa motorized and steerable vehicle (Figure 1). The head alters the directions ofgaze of its two cameras using four degrees of rotational freedom: a central pan(P) or neck axis, left (L) and right (R) vergence axes, and an elevation axis (E).Each axis is driven by a DC servo-motor �tted with an harmonic drive gearbox,giving minimal backlash, and is capable of accelerations in excess of 20; 000�s�2and smooth tracking speeds ranging down from 400�s�1 to 0:03�s�1. An encoderattached to the motor side of the gearbox feeds back information to the servo-controller at several hundred Hz, allowing precise control of position and velocityeven without using visual feedback.
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Figure 1: The apparatus and visuo-control scheme. The vision module comprise avertical extended edge detector run independently in left and right image streams.The method of steering uses �xation on a scene feature which the vehicle shouldapproach then turn around. For indoor navigation, the feature most often encoun-tered is a vertical edge (Figure 1). Every 40 ms as a new image is captured a fea-ture detector running in each camera determines the angular displacement of thefeature from the image centre and communicates it to the head controller whichin turn powers the head's P, L and R axis motors to re-centre the feature. Thekinematic redundancy between P, L and R is eliminated in this work by requiringsymmetric convergence (�L = �R in Figure 2). As the vehicle moves, the resultingtime-varying angle � between the cyclopean direction of gaze g of the head andthe instantaneous translational velocity v of the vehicle is derived from odometricinformation from encoders on the head axes and used to derive the steering com-mands as described below. The vision and control computations are performedon transputers which communicate directly with the vehicle's servo-controller andcommunicate via a PC with the head's servo-controller.Referring to Figure 2, to move around the �xated point O at some safe radiusR requires a change in translational heading ofh(t) = �(t) � sin�1 (R=D(t))
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Right CameraFigure 2: The scene, robot and head geometry viewed from above. The active head�xates O and the robot is required to steer into an orbit of radius R around the point.where D is the distance to the obstacle. The sign of R determines the direction ofturn about the �xated point: a counter-clockwise turn (viewed from above as inFigure 2) is generated if R > 0 and a clockwise turn if R < 0.Two methods of recovering D are possible. The one implemented here usesthe angle of convergence of the stereo head. Under symmetric convergence D =(I=2) cot �L, where I is inter-camera separation. The second method utilizes theratio of rate of change of angle to speed, D = (v= _�) sin �, and is thus achievablemonocularly (although further odometry is required from the vehicle because itsrotational motion must be derived). Once h(t) is found, a steering demands(t) = �h(t) (1)is sent to the vehicle controller. The gain in both live and simulated experimentsis � = 0:5.3 ResultsAs the simulation of Figure 3 shows, the rule's e�ect is to steer the vehicle into acircular orbit of radius jRj around the �xated point. Here R > 0, and the orbit iscounter-clockwise sense.The same sense is chosen in the experiment shown in Figure 4, where severalframes cut from a video show the robot steering around a vertical pole. The stereohead can be seen �xating on the pole, maintaining symmetrical convergence. Thedirection of gaze approaches perpendicular to the direction of motion as the vehiclesteers into an orbit.Although the experiment demonstrates the steering rule applied to a �xedposition, the rule is equally useful when the �xation point moves. This is illustratedin Figure 5, where the �xation point marked with an � is constantly updated as
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Figure 3: A simulation of the e�ect of the simple steering rule derived in the text.

1 2
3 4Figure 4: The stereo head �xates on the vertical pole maintaining symmetrical con-vergence, and the vehicle steers into an orbit, here an counter-clockwise one.
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Figure 5: A simulation of the control law driving a vehicle clockwise around a trackwith relatively high curvatures, using �xation on the furthest visible tangent point.The crosses times show successive positions of the �xated tangent point as it movesahead of the vehicle.the vehicle moves to be the most distant visible tangent point, in the spirit of theobservations of Land and Lee [6]. R, the safe radius, is now the desired distancefrom the kerb. The central line shows the track followed by the vehicle steering inthis way. The top right of the �gure shows how gentle corners are `cut' in a waythat would not occur with a kerb- or centre-hugging algorithm.4 DiscussionFigure 6 reproduces a portion of the data accumulated by Land and Lee [6] whilststeering a vehicle around a winding one-way road. The steering angle responsehas been advanced in time by 0.75s, compensating for processing delay, and scaleddown uniformly by a factor of about 3. Overall, the response is linearly propor-tional to the gaze angle, though we note an apparent asymmetry in the data forleft- and right-handed turns.They discussed their observations in terms of the relationship between averagecurvature C of the road between the vehicle and the �xated point, and the angle� between gaze and heading directions,C = 1=(R cos �) � 1=R ; (2)where R is the distance between vehicle and kerb. The implication is that thesteering angle s is set to a �xed value that would take the vehicle in an arc ofconstant curvature up to the tangent point. When � and s are small (meaning abend in the road is gentle), this model makes C proportional to �2. In the samelimit, the curvature of the vehicle's trajectory C is proportional to steering inputs. That is, s would be proportional to �2 | counter to the striking feature of theirdata in Figure 6 which is that s is linearly related to � over extended periods.It appears that the natural data are more easily reconciled with our scheme forrobot navigation. If the curvature is always modest (unlike the course in Figure 5),the �xated tangent point will always be far enough ahead to make sin�1(R=D)small. From the data in Figure 6, the maximum j _�j � 15�s�1 when � � 20� and
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Figure 6: A sampled portion of the data of Land and Lee. The gaze angle is shown toscale, but the steering response has been advanced in time by 0.75s and scaled downby a factor of approximately 3.v = 12:5ms�1, giving D � 17m. If we take R as 1m, then sin�1(R=D) is onlysome 3� | small compared with the gaze angle of � = 20�. (These numbers arecompatible with more recent observations of Land and Horwood [5] that indicatethat drivers perform best when the �xation distance D is around 1s ahead of thevehicle.)Thus for the driving conditions explored by Land and coworkers [6, 5] we shouldexpect little deviation from linear proportionality between the instantaneous steer-ing response and gaze angle. Proportionality also appears more appropriate whenthe behaviour is regarded within the framework of feedback control.5 Towards recovering localization with anactive headThe steering behaviour described is closed-loop and requires no knowledge of thevehicle's position to operate, and so is suited to tactical navigation without a map.It assumes that if the camera can see it, the robot can reach it. Obviously such abehaviour must accompanied by one for obstacle avoidance.For navigation with a map, localization is required. If we assume that �xationalone is to be used, visual sensing will return only the range and direction relativeto the vehicle of the currently �xated feature | exactly the sort of sensor dataavailable from, say, sonar. But whereas sonar sensors are cheap enough to haveseveral in a ring around a vehicle which can be multiplexed electronically, a �xatingcamera platform can address only one point in the scene, and there is a time costassociated with moving to look at another point. One approach that can be takenis for the vehicle to stop when localization is needed and use the active head tomake sequential observations of several reference features. This technique, andits tie-in with familiar structure from motion methods in computer vision, has
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ϕFigure 7: The geometry of the localization system. The robot vehicle at (x; y) andwith orientation � relative to the x-axis observes a reference point at the origin O andrecovers a gaze angle � and distance D.been investigated in previous work [3], and will certainly be of value in somecircumstances | for instance, for re-orientation after the robot has become lost ordistracted from its current task. However, for e�cient continuous localization whilethe vehicle is moving, the robot must extract whatever information is availablefrom observation of a single feature at a time. What kind of information can beobtained, and where should it look to best improve knowledge of its location?To begin to explore this problem we have implemented in simulation a locationalgorithm similar to one used in sonar navigation work by Leonard and Durrant-Whyte [7]. Much of this work on directed sonar sensing is relevant to navigationusing active vision. One di�erence between the visual head and a sonar sensor isthat with vision we are able to measure angles very accurately, but obtain quitelarge errors in measurements of depth. For sonar the reverse is true.5.1 Localization with the Extended Kalman FilterThe situation in consideration is depicted in Figure 7. The reference point underconsideration is used to de�ne the origin of an xy coordinate frame. The orienta-tion of the axes is determined by the initial position of the vehicle: we de�ne they-axis to pass through this point. The position and orientation of the vehicle attime t are hence expressed with three components (x; y; �). Two input parameterscontrol the vehicle motion: the velocity v at which it is driven, and the angle s towhich the steerable wheel is turned.At time intervals �t a measurement is obtained from the active head of thedistance D and gaze angle � to the reference point. The Extended Kalman Filterprovides a method for making the best use of these measurements to calculate thecurrent position of the vehicle, by producing an estimate and estimate variancewhich depend not only on the most recently acquired data but implicitly on allthe previous ones along the trajectory.The state vector x, control vector u and measurement vector z used in the
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Figure 8: The light grey true vehicle trajectory is closely followed by the �lteredestimate of position (shown in black), while an estimate based just on odometry dataquickly diverges. The scale of the diagram represents 10 metres in the simulation.EKF are therefore:x = 0@ xy� 1A ; u = � vs � ; z = � D� � : (3)The state transition equation describes how the system being modeled changesfrom one time step k to the next. In typical notation,x(k + 1) = f (x(k);u(k)) + v(k) ; (4)where v(k) is Gaussian process noise. For our system, the transition function f isf (x(k);u(k)) = 0@ x(k) + R(k) (cos�(k) sinK(k) + sin�(k) (cosK(k)� 1))y(k) + R(k) (sin�(k) sinK(k) + cos�(k) (1� cosK(k)))�(k) +K(k) 1A(5)where R(k) = L= tan s(k) and K(k) = v(k)�t=R(k). L is the constant wheelbaseof the vehicle, and �t is the time-step. R(k) has the physical interpretation ofbeing the signed radius of curvature of the trajectory between points k and k+ 1,and K(k) is the incremental angle through which the vehicle turns.The measurement equation, written asz(k + 1) = h(x(k + 1)) +w(k + 1) ; (6)where w(k+1) is Gaussian measurement noise, relates measurements to the currentstate of the system. In our case,h(x(k + 1)) =  px(k + 1)2 + y(k + 1)2tan�1 �y(k+1)�x(k+1) � �(k + 1) ! : (7)
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Time (s)Figure 9: Distance of the vehicle from the reference point O over time: the smoothtrajectory (solid line) output by the �lter closely follows the true value (dotted line),and contrasts with the jagged dashed line representing the measurements.Both types of noise v and w were modeled, in terms of potential errors in thevehicle control and head measurements respectively.5.2 Testing the Localization AlgorithmSince the simulation provides us with ground truth for the vehicle motion, we canevaluate the performance of the �ltering method for localization. Figure 8 showshow when the control parameters are manipulated to make the vehicle follow awinding course around the reference feature, the �ltered estimation of positionremains locked onto the true trajectory (to within a few centimetres typically). Asecond estimate, based solely on integration of the control parameters fed to thevehicle, which represents the information available from non-visual odometry, isseen to quickly diverge.Figure 9 demonstrates clearly the smoothing e�ect of the �lter on the recoveredtrajectory. It compares the noisy range measurements of the distance of the vehiclefrom the reference point (as a trajectory similar to the �rst stages of that inFigure 8 is followed) with the true value of this distance and the value calculatedfrom the �lter.We deduce from these early results that the EKF does provide a very promisingway to estimate localization from �xation on a single reference point. The nextstage of our work will be to implement this technique in the real world for furtherexperimentation.



British Machine Vision Conference6 ConclusionsWe have demonstrated that a very simple rule linking �xation angle and steeringangle can be used to guide a robot vehicle �tted with an active stereo head arounda given obstacle. Provided proprioceptive information is available from the head,visual processing is reduced to a search (in our case in only one dimension) aroundthe centre of the image in order to maintain �xation. We have shown in simulationthat the same steering rule would guide a vehicle along a road, were the �xationpoint to transfer from tangent point to tangent point as the road ahead unfolded.The rule proposed here appears to provide a simpler explanation of the naturalobservations of human driver performance made by Land and Lee [6], avoidingthe need for the driver to estimate the average curvature of the road ahead to thenext tangent point.It would be of interest to measure human driver gaze angles and responseson sharper bends where sin�1(R=D) is substantially greater than 0.1, perhapsparticularly on hairpin bends where the tangent point is obscured from the driver'sview by the vehicle's body. In the latter case, our experience suggests that theeye and head are drawn towards the stationary centre of curvature. One drives bylooking out the side window at a �xed point with gaze angles approaching 90�, asdoes the robot vehicle.We have shown that information very useful for localization can be obtainedfrom active �xation on a world feature. Which features will be the best to �xateon and when should a transition be made from one to another? These are ques-tions we hope to address soon, but instinct suggests that given an uncertainty inlocation, which can be thought of as an ellipse surrounding the current estimate,an observation at right angles to the major axis would make the best use of theaccurate angular information available and reduce the uncertainty the most.AcknowledgmentsThis work was supported by EPSRC Grant GR/H77668, by a Glasstone Fellowshipfrom the University of Oxford to IDR, and by an EPSRC Research Studentshipto AJD.References[1] R. Bajcsy. Active perception. Proc IEEE, 76:996{1005, 1988.[2] D.H. Ballard. Animate vision. Arti�cial Intelligence, 48:57{86, 1991.[3] A. J. Davison, I. D. Reid, and D. W. Murray. The active camera as a projective pointingdevice. In Proc. 6th British Machine Vision Conf., Birimingham, pages 453{462, 1995.[4] J. K�oseck�a, R. Bajcsy, and M. Mintz. Control of visually guided behaviours. In Real-timeComputer Vision. Cambridge University Press, Cambridge UK, 1994.[5] M.F. Land and J. Horwood. Which parts of the road guide steering? Nature, 377:339{340,28 September 1995.[6] M.F. Land and D.N. Lee. Where look when we steer. Nature, 369:742{744, 30 June 1994.[7] J. J. Leonard and H. F. Durrant-Whyte.Directed Sonar Navigation. Kluwer Academic Press,1992.


