
Registering Incomplete Radar Imagesusing the EM AlgorithmSimon Moss and Edwin R. HancockDepartment of Computer Science, University of YorkYork, Y01 5DD, UKAbstractThis paper describes an application of the EM (expectation and max-imisation) algorithm to the registration of incomplete millimetric radarimages. The data used in this study consists of a series of non over-lapping radar sweeps. Our registration process aims to recover trans-formation parameters between the radar-data and a digital map. Thetokens used in the matching process are fragmented line-segments ex-tracted from the radar images which predominantly correspond tohedge-rows in the cartographic data. The EM technique models datauncertainty using Gaussian mixtures de�ned over the positions and ori-entations of the lines. The resulting weighted least-squares parameterestimation problem is solved using the Levenberg-Marquardt method.A sensitivity analysis reveals that the data-likelihood function is un-imodal in the translation and scale parameters. In-fact the algorithmis only potentially sensitive to the choice of initial rotation parameter;this is attributable to local sub-optima in the log-likelihood functionassociated with �2 orientation ambiguities in the map.1 IntroductionRadar imagery is an important means of sensing and mapping elevated featuresin the landscape. Unfortunately, one of the obstacles to the automatic interpret-ation of this imagery is the presence of speckle noise. The speckle process ismost intrusive when the scene contains physical structure whose spatial scale isof the same order as the wavelength of the radar. In a recent study, we demon-strated how relaxation techniques could be successfully deployed to control clutterin the segmentation and matching of features in conventional synthetic apertureradar images [4, 12]. The work reported in this paper describes a more ambitiousprogramme of research aimed at matching millimetric Doppler beam sharpenedimages (DBS) against a digital map. These images di�er from their SAR counter-parts in a number of important respects. Firstly, the frequency of the radar is ofthe order of 100GHz rather than the 10 GHz which is typical of SAR. This meansthat structures whose size is of the order of a few millimetres appear rough to theradar. The shorter wavelengths employed in the DBS imagery are a consequenceof physical constraints imposed upon the dimensions of the resonating cavities inairborne military radars. The second di�culty stems from the imaging geometry.
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Since the radar is used to sense objects in the line of ight from a low ying air-craft, the images are subject to small angle systematics. Finally, the focussing ofthe radar means that the scenes are imaged as a series of non-overlapping sweepsinterspersed with dead-regions.The practical goal of the work described in this paper is to develop a naviga-tion aid for airborne vehicles. The scenes under study are of rural areas where theprincipal man-made features available for cartographic matching are linear hedgestructures. These are elevated and produce ridge artifacts in the radar images.Since these features are vegetative, they appear rough to the radar and resultin specularities. The main obstacle to cartographic matching resides in the factthat because the scene is sensed as a series of non-overlapping sweeps the radarfragments the target hedge structures. This problem is illustrated in the exampleimage shown in Figure 1a. Preliminary studies have shown that because we areoperating both with highly fragmented line-tokens and severe levels of clutter, con-ventional grouping strategies provide an ine�ective means of preprocessing priorto matching [12]. Instead, we seek a statistical framework that is capable of re-covering the transformation between radar-data and map when clutter and dataincompleteness are limiting factors.It is for these reasons that we turn to Dempster, Laird and Rubin's EM (ex-pectation and maximisation) [3] algorithm. This algorithm was originally intro-duced as a means of �nding maximum likelihood solutions to problems posed interms of incomplete data. Despite its relatively poor convergence properties, thealgorithm provides a powerful statistical framework for �tting sparse data thathas many features in common with robust parameter estimation. In the domainof machine vision, the EM algorithm has been exploited for estimating multiplemotion parameters [9] and for face recognition [10]. Of particular relevance to thework reported in this paper, is the fact that the algorithm has been successfullyutilised in the recognition of occluded objects [13] and in the extraction of 3Dobject pose [6] from relatively uncluttered 2D images. Viola and Wells [13] havereported a registration method which has many features that are reminiscent ofthe EM algorithm. The method maximises a mutual information measure de�nedover a set of Parzen estimates to align images using raw intensity information.Recently, the methodological basis of the algorithm has attracted renewed interestin the domain of arti�cial neural networks where it has not only been shown tohave an intimate relationship with mean-�eld annealing [1], but also to providea convenient framework for hierarchical data processing [7]. The basic idea un-derlying the algorithm is to iterate between the expectation and maximisationsteps until convergence is reached. Expectation involves computing a weightedlikelihood function using a mixture density speci�ed in terms of a series of modelparameters. In the maximisation phase, the model parameters are recomputed tomaximise the expected value of the incomplete data likelihood.2 The EM AlgorithmIn this Section we detail our representation of the matching process and describehow the underlying set of transformation parameters can be recovered using theEM algorithm. The EM algorithm was �rst introduced by Dempster, Laird andRubin as a means of �tting incomplete data [3]. The algorithm has two stages.
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The expectation step involves estimating a mixture distribution using current para-meter values. The maximisation step involves computing new parameter valuesthat optimise the expected value of the weighted data likelihood. This two-stageprocess is iterated to convergence. Although the EM algorithm has been exploitedin the recovery of object pose by Hornegger and Nieman [6], the main contributionof the this paper is to demonstrate the e�ectiveness of the algorithm in matchingthe highly cluttered and incomplete imagery delivered by millimetric radar.2.1 RepresentationOur basic aim is to recover the parameters of the co-ordinate transformationbetween the incomplete radar data and a digital map. The tokens used in thematching process are line-segments which are characterised by their mid-pointco-ordinates (xi; yi) in the image plane and their line-orientation in the imageco-ordinate system �i. Each line in the radar-image is represented by a vectorw� i = (xi; yi; �i)T where i is the segment index. The available line-data for theradar image is denoted by the set w = fw� i;8i 2 Dg where D is the segmentindex-set. The lines constituting the cartographic model are similarly representedby the set z = fz�j ;8j 2Mg. Here M is the index-set for the model lines and thez�j represent the corresponding measurement-vectors. The aim of our matching al-gorithm is to iteratively recover a parameter-vector �(n) = (�(n)1 ; ::::; �(n)4 )T whichdescribes the Euclidean transformation that brings the radar lines and map linesinto registration with one-another. The four components of the parameter vectorare as follows; �(n)1 represents the x-translation, �(n)2 represents the y-translation,�(n)3 is the rotation and �(n)4 is the relative scale. The registration process is ef-fected by transforming the measurement vectors representing the model-lines inthe map into the co-ordinate system of the radar-image. The transformed versionof the measurement vector z�j is given byz�0j = F (z�j ;�(n)) (1)where the transformation-function F is de�ned as followsF (z�j ;�(n)) = U(�(n))z�j + V �(n) (2)The matrix U(�(n)) models the scaling and rotation of co-ordinatesU(�(n)) = 0@�(n)4 cos�(n)3 ��(n)4 sin�(n)3 0�(n)4 sin�(n)3 �(n)4 cos�(n)3 00 0 11A (3)while the matrix V selects the translation components for the parameter vector�(n) V = 0@ 1 0 0 00 1 0 00 0 1 01A (4)
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2.2 ExpectationBasic to our philosophy of exploiting the EM algorithm is the idea that everyline-segment in the radar data can in principle associate to each of the lines inthe digital map with some a posteriori probability. This modelling ingredient isnaturally incorporated into the �tting process by developing a mixture model overthe space of potential matching assignments. The expectation step of the EM al-gorithm provides an iterative framework for computing the a posteriori matchingprobabilities using Gaussian mixtures de�ned over a set of transformation para-meters.The EM algorithm commences by considering the conditional likelihood forthe data-line measurements w� i given the current set of transformation parameters,�(n). The algorithm builds on the assumption that the individual data items areconditionally independent of one-another given the current parameter estimates,i.e. p(wj�(n)) =Yi2D p(w� ij�(n)) (5)Each of the component densities appearing in the above factorisation is representedby a mixture distribution de�ned over a set of putative model-data associationsbetween the two sets of line-tokensp(w� ij�(n)) = Xj2M p(w� ijz�j ;�(n))P (z�j j�(n)) (6)The ingredients of the above mixture density are the component conditional meas-urement densities p(w� ijz�j ;�(n)) and the mixing proportions P (z�j j�(n)). The con-ditional measurement densities represent the likelihood that the data-line meas-urement w� i originates from the model-line indexed j under the prevailing set oftransformation parameters �(n). We use the shorthand notation �(n)j = P (z�j j�(n))to denote the mixing proportions. These quantities provide a natural mechanismfor assessing the signi�cance of the individual model-lines in explaining the currentdata-likelihood. For instance if �(n)j approaches zero, then this indicates that thereis no matching line in the data. In other words, the mixture model provides a nat-ural way of accommodating missing or occluded model segments. It is importantto stress that the mixing proportions are iteration dependent, being conditionedupon the current parameter values.Conventionally, maximum-likelihood parameters are estimated using the com-plete log-likelihood for the available dataL(�(n);w) =Xi2D ln p(w� ij�(n)) (7)In the case where the conditional measurement densities are univariate Gaussian,then maximising the complete likelihood function corresponds to solving a systemof least-squares equations for the transformation parameters. By contrast, theexpectation step of the EM algorithm is aimed at estimating the log-likelihoodfunction when the data under consideration is incomplete. In our line-matchingexample this incompleteness is a consequence of the fact that we do not know howto associate tokens in the radar image and their counterparts in the cartographic
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map. In other words we need to average the log-likelihood over the space of poten-tial line associations. In fact, it was Dempster, Laird and Rubin [3] who observedthat maximising the weighted log-likelihood was equivalent to maximising theconditional expectation of the log-likelihood for a new parameter set given an oldparameter set. For our matching problem, maximisation of the expectation of theconditional likelihood, i.e. E[L(�(n+1);w)j�(n);w)], is equivalent to maximisingthe weighted log-likelihood functionQ(�(n+1)j�(n)) =Xi2D Xj2MP (z�j jw� i;�(n)) ln p(w� ijz�j ;�(n+1)) (8)The a posteriori probabilities P (z�j jw� i;�(n)) play the role of matching weights inthe expected likelihood. We interpret these weights as representing the probabilityof match between the data line indexed i and the model-line indexed j. In otherwords, they represent model-datum a�nities. Using the Bayes rule, we can re-write the a posteriori matching probabilities in terms of the components of theconditional measurement densities appearing in the mixture model in equation (6)P (z�j jw� i;�(n)) = �(n)j p(w� ijz�j ;�(n))Pj02M �(n)j0 p(w� ijz�j0 ;�(n)) (9)The mixing proportions are computed by averaging the a posteriori probabilitiesover the set of data-lines, i.e.�(n+1)j = 1jDjXi2D P (z�j jw� i;�(n)) (10)In order to proceed with the development of a line registration process werequire a model for the conditional measurement densities, i.e. p(w� ijz�j ;�(n)).Here we assume that the required model can be speci�ed in terms of a multivariateGaussian distribution. The random variables appearing in these distributions arethe error residuals for the position and orientation predictions of the jth modelline delivered by the current estimated transformation parameters. Accordinglywe write p(w� ijz�j ;�(n)) = 1(2�) 32pj�j exp��12�i;j(�(n))T��1�i;j(�(n))� (11)In the above expression � is the variance-covariance matrix for the vector of error-residuals �i;j(�(n)) = w� i � F (z�j ;�(n)) between the components of the predictedmeasurement vectors z�0j and their counterparts in the data, i.e. w� i. Formally, thematrix is related to the expectation of the outer-product of the error-residuals i.e.� = E[�i;j(�(n))�i;j(�(n))T ]. Accordingly, we compute the following estimate of�, ~� = Pi2DPj2M P (z�j jw� i;�(n))�i;j(�(n))�i;j(�(n))TPi2DPj2M P (z�j jw� i;�(n)) (12)With these ingredients, and using the shorthand notation q(n)i;j = P (z�j jw� i;�(n))
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for the a posteriori matching probabilities, the expectation step of the EM al-gorithm simply reduces to computing the weighted squared error criterionQ0(�(n+1)j�(n)) = �12Xi2D Xj2M q(n)i;j �i;j(�(n))T ~��1�i;j(�(n)) (13)In other words, the a posteriori probabilities q(n)i;j e�ectively regulate the con-tributions to the likelihood function. Matches for which there is little evidencecontribute insigni�cantly, while those which are in good registration dominate.2.3 MaximisationThe maximisation step aims to locate the updated the parameter-vector �(n+1)that optimises the quantity Q(�(n+1)j�(n)), i.e.�(n+1) = argmax� Q0(�j�(n)) (14)We solve the implied weighted least-squares minimisation problem using the Leven-berg Marquardt technique [8, 11]. This non-linear optimisation technique o�ersa compromise between the steepest gradient and inverse Hessian methods. Theformer is used when close to the optimum while the latter is used far from it. Inother words, when close to the optimum, parameter updating takes place withstep-size proportional to the gradient r�Q0(�j�(n)). When far from the optimumthe optimisation procedure uses second-order information residing in the Hes-sian, H , of Q0(�j�(n)); the corresponding step-size for the parameter vector �is H�1r�Q(�j�(n)). Central to the Levenberg-Marquardt method is the idea ofexerting control over these two update modes using a positive parameter �. Thisparameter de�nes the elements of the matrix ��k;l = n 1 + � if k = l1 otherwise (15)According to the Levenberg-Marquardt method the step-size ��l for the parameter�l is found by solving the following set of linear equations4Xl=1 �k;l @2Q0(�j�(n))@�k@�l ��l = @Q0(�j�(n))@�k (16)The parameter � is chosen to be large if r�Q0(�j�(n)) > 0; in this case theoptimisation process operates in steepest gradient mode. If on the other hand,r�Q0(�j�(n)) < 0 then � is reduced towards zero; in this case the optimisa-tion process operates in inverse Hessian mode.. When controlled e�ectively, thismethod is less prone to local convergence than the standard steepest gradientdescent method, while o�ering e�ciency gains over the inverse Hessian method.3 Radar DataThe overall goal of the study reported in this paper is the registration of partialradar images against a digital map. Figure 1a shows a typical radar image. The
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images are of rural areas in which the principal man-made linear-features avail-able for matching are hedge-rows. The radar data is delivered as a series of non-overlapping sweeps interspersed with substantial dead-regions. Within each sweepthere is both a signi�cant oriented background texture and a systematic variationin background intensity. Before we can commence with the registration process, wemust extract a set of line-segments for matching. Notwithstanding the di�cultiesassociated with the partial sweeps, there are a number of obstacles to the character-isation of hedges from their radar reections in speckle noise. In the �rst instance,the structures themselves are of variable width. Moreover, there are position andorientation dependant shadow artifacts which introduce an anti-symmetric com-ponent into the symmetric intensity pro�le of idealised hedge reections. It isfor these reasons that the hedge radar reections are not well characterised byidealised even-symmetry �xed-width line-detectors such as the directional secondderivative of Gaussian or the cosine-phase Gabor �lter. Instead, we capture thevariable width and mixed symmetry structure of the intensity pro�les using a bankof sine and cosine phase Gabor �lters of multiple orientation and scale. Here weadopt a statistical approach based on principal components analysis to �nd linearcombination of these �lter responses for optimal hedge-enhancement. Figure 1bshows the enhanced hedge-features obtained by applying the �lter combinationsto the raw radar image.The next task is the re-enforcement of the �lter responses to deliver connectedlinear-features. This second processing step is performed using a Bayesian relaxa-tion scheme which utilises a statistical model of the �lter-bank response [5]. Thelinear �lter response combinations are used as input to a relaxation operator whichiterates to enhance local connectivity using a dictionary of local line-structures [4].Once stable line features are to hand, candidate line-segments may be extracted.Figure 1c shows the detected straight-line segments. Although most of the genuinehedge-features are detected, there is a signi�cant population of extraneous lines.4 Matching ExperimentsWe are now in a position to demonstrate the e�ectiveness of our registration pro-cess. Figure 2 shows the line registration process iterating from an initial guessto the �nal match. The red lines overlayed on the original radar image are thelinear segments from the digital map. In this example, the initial parametersare misregistered in scale, orientation and position. The algorithm converges inapproximately six iterations.In iterating to the �nal solution, we have applied the Levenberg-Marquardttechnique to the expected data log-likelihood Q0(�(n+1)j�(n)) to extract optimalparameter values at each iteration. One of the well-documented shortcomings ofthe EM algorithm is its local convergence properties. However, our motivation inadopting the Levenberg-Marquardt method in favour of straightforward steepestgradient have been to circimvent some of the problems of local convergence. Inorder to understand the limitations of our registration process, we have there-fore investigated the structure of the log-likelihood function Q0(�(n+1)j�(n)) as afunction of the scale, rotation and translation parameters. Figures 3a shows theexpected log-likelihood as a function of scale and translation, while Figure 3b is aplot of expected log-likelihood as a function of rotation and scale. It is interesting
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to note that while the scale-translation behaviour is unimodal, the rotation-scaleplot contains local sub-optima. Closer inspection of the Figure 3b reveals thatthese sub-optima are associated with rotations of �2 . This rotation ambiguity isattributable to the fact that the hedge-rows in the digital map are organised intorectangular �eld-structures.Our �nal set of experiments aims to evaluate the sensitivity of our method torandom perturbations of the line-segments. Here we aim to illustrate the noisesensitivity of the match when the endpoints of the line-segments are subjectedto Gaussian position errors of known variance. Figure 4 shows the fraction oflines correctly matched as a function of the line-end position error expressed as afraction of the average interline spacing. The three curves correspond to di�erentlevels of initial line-displacement from the ground-truth solution. The upper curvecorresponds to an average initial displacement which is 10% of the average inter-line spacing, in the case of the middle curve the displacement is 50% while in thecase of the lower curve the displacement is 100%. The main conclusions from thisplot is that the registration accuracy falls linearly with random measurement errorsand that the method can not tolerate initialisation errors signi�cantly greater then50%.
Figure 1: Extracting line-segments from the radar data: a) Original radar image(note how the sweeps fragment the image features and the highly textured nature ofimage data); b) enhanced line-features after multi-channel �ltering; c) the extractedline-segments5 ConclusionsWe have detailed a technique for registering incomplete radar images which usesthe EM algorithm to estimate transformation parameters using measurementsprovided by line-segments. The registration technique is only susceptible to localconvergence if the initial rotation parameter is poorly estimated. In-fact, the datalog- likelihood function is unimodal in scale and translation. We aim to minim-ise the di�culties associated with local convergence by adopting the Levenberg-Marquardt optimisation method. There are clearly a number of ways in which thework described in this paper can be extended. Although several authors have re-ported line registration algorithms [2, 11] these are invariably based on essentiallyad hoc cost functions. One natural extension of our methodology is the recoveryof 3D pose from 2D images [6]. Finally, the EM framework reported in this paper
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Figure 2: Initial, third and �nal iterations of the map-�tting process. The algorithmconverges after six iterations.
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