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Abstract

This paper describes an application of the EM (expectation and max-
imisation) algorithm to the registration of incomplete millimetric radar
images. The data used in this study consists of a series of non over-
lapping radar sweeps. Our registration process aims to recover trans-
formation parameters between the radar-data and a digital map. The
tokens used in the matching process are fragmented line-segments ex-
tracted from the radar images which predominantly correspond to
hedge-rows in the cartographic data. The EM technique models data
uncertainty using Gaussian mixtures defined over the positions and ori-
entations of the lines. The resulting weighted least-squares parameter
estimation problem is solved using the Levenberg-Marquardt method.
A sensitivity analysis reveals that the data-likelihood function is un-
imodal in the translation and scale parameters. In-fact the algorithm
is only potentially sensitive to the choice of initial rotation parameter;
this is attributable to local sub-optima in the log-likelihood function
associated with 7 orientation ambiguities in the map.

1 Introduction

Radar imagery is an important means of sensing and mapping elevated features
in the landscape. Unfortunately, one of the obstacles to the automatic interpret-
ation of this imagery is the presence of speckle noise. The speckle process is
most intrusive when the scene contains physical structure whose spatial scale is
of the same order as the wavelength of the radar. In a recent study, we demon-
strated how relaxation techniques could be successfully deployed to control clutter
in the segmentation and matching of features in conventional synthetic aperture
radar images [4, 12]. The work reported in this paper describes a more ambitious
programme of research aimed at matching millimetric Doppler beam sharpened
images (DBS) against a digital map. These images differ from their SAR, counter-
parts in a number of important respects. Firstly, the frequency of the radar is of
the order of 100GHz rather than the 10 GHz which is typical of SAR. This means
that structures whose size is of the order of a few millimetres appear rough to the
radar. The shorter wavelengths employed in the DBS imagery are a consequence
of physical constraints imposed upon the dimensions of the resonating cavities in
airborne military radars. The second difficulty stems from the imaging geometry.
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Since the radar is used to sense objects in the line of flight from a low flying air-
craft, the images are subject to small angle systematics. Finally, the focussing of
the radar means that the scenes are imaged as a series of non-overlapping sweeps
interspersed with dead-regions.

The practical goal of the work described in this paper is to develop a naviga-
tion aid for airborne vehicles. The scenes under study are of rural areas where the
principal man-made features available for cartographic matching are linear hedge
structures. These are elevated and produce ridge artifacts in the radar images.
Since these features are vegetative, they appear rough to the radar and result
in specularities. The main obstacle to cartographic matching resides in the fact
that because the scene is sensed as a series of non-overlapping sweeps the radar
fragments the target hedge structures. This problem is illustrated in the example
image shown in Figure la. Preliminary studies have shown that because we are
operating both with highly fragmented line-tokens and severe levels of clutter, con-
ventional grouping strategies provide an ineffective means of preprocessing prior
to matching [12]. Instead, we seek a statistical framework that is capable of re-
covering the transformation between radar-data and map when clutter and data
incompleteness are limiting factors.

It is for these reasons that we turn to Dempster, Laird and Rubin’s EM (ex-
pectation and maximisation) [3] algorithm. This algorithm was originally intro-
duced as a means of finding maximum likelihood solutions to problems posed in
terms of incomplete data. Despite its relatively poor convergence properties, the
algorithm provides a powerful statistical framework for fitting sparse data that
has many features in common with robust parameter estimation. In the domain
of machine vision, the EM algorithm has been exploited for estimating multiple
motion parameters [9] and for face recognition [10]. Of particular relevance to the
work reported in this paper, is the fact that the algorithm has been successfully
utilised in the recognition of occluded objects [13] and in the extraction of 3D
object pose [6] from relatively uncluttered 2D images. Viola and Wells [13] have
reported a registration method which has many features that are reminiscent of
the EM algorithm. The method maximises a mutual information measure defined
over a set of Parzen estimates to align images using raw intensity information.
Recently, the methodological basis of the algorithm has attracted renewed interest
in the domain of artificial neural networks where it has not only been shown to
have an intimate relationship with mean-field annealing [1], but also to provide
a convenient framework for hierarchical data processing [7]. The basic idea un-
derlying the algorithm is to iterate between the expectation and maximisation
steps until convergence is reached. Expectation involves computing a weighted
likelihood function using a mixture density specified in terms of a series of model
parameters. In the maximisation phase, the model parameters are recomputed to
maximise the expected value of the incomplete data likelihood.

2 The EM Algorithm

In this Section we detail our representation of the matching process and describe
how the underlying set of transformation parameters can be recovered using the
EM algorithm. The EM algorithm was first introduced by Dempster, Laird and
Rubin as a means of fitting incomplete data [3]. The algorithm has two stages.
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The expectation step involves estimating a mixture distribution using current para-
meter values. The maximisation step involves computing new parameter values
that optimise the expected value of the weighted data likelihood. This two-stage
process is iterated to convergence. Although the EM algorithm has been exploited
in the recovery of object pose by Hornegger and Nieman [6], the main contribution
of the this paper is to demonstrate the effectiveness of the algorithm in matching
the highly cluttered and incomplete imagery delivered by millimetric radar.

2.1 Representation

Our basic aim is to recover the parameters of the co-ordinate transformation
between the incomplete radar data and a digital map. The tokens used in the
matching process are line-segments which are characterised by their mid-point
co-ordinates (z;,y;) in the image plane and their line-orientation in the image
co-ordinate system 6;. Each line in the radar-image is represented by a vector
w, = (z;,9:,0;)7 where i is the segment index. The available line-data for the
radar image is denoted by the set w = {w;,Vi € D} where D is the segment
index-set. The lines constituting the cartographic model are similarly represented
by the set z = {z;,Vj € M}. Here M is the index-set for the model lines and the
z; represent the corresponding measurement-vectors. The aim of our matching al-

gorithm is to iteratively recover a parameter-vector ®(® = (q&gn), oy gbfln))T which
describes the Euclidean transformation that brings the radar lines and map lines
into registration with one-another. The four components of the parameter vector
are as follows; ¢§n) represents the x-translation, ¢én) represents the y-translation,
¢§n) is the rotation and ¢Z(ln) is the relative scale. The registration process is ef-
fected by transforming the measurement vectors representing the model-lines in
the map into the co-ordinate system of the radar-image. The transformed version
of the measurement vector z; is given by

= Flz;, 8") 1)
where the transformation-function F' is defined as follows

F(z;,®™)) = U(@™)z; + Vo) (2)

YR

The matrix U(®(™) models the scaling and rotation of co-ordinates

¢Eln) cos (;sg”) —¢Eln) sin ¢§n) 0
U@™) = oM singl™ oM cospl™ 0 (3)
0 0 1

while the matrix V selects the translation components for the parameter vector
()

1000
v=[0 1 0 0 (4)
0010
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2.2 Expectation

Basic to our philosophy of exploiting the EM algorithm is the idea that every
line-segment in the radar data can in principle associate to each of the lines in
the digital map with some a posteriori probability. This modelling ingredient is
naturally incorporated into the fitting process by developing a mixture model over
the space of potential matching assignments. The expectation step of the EM al-
gorithm provides an iterative framework for computing the a posteriori matching
probabilities using Gaussian mixtures defined over a set of transformation para-
meters.

The EM algorithm commences by considering the conditional likelihood for
the data-line measurements w, given the current set of transformation parameters,
®("). The algorithm builds on the assumption that the individual data items are
conditionally independent of one-another given the current parameter estimates,

i.e.
p(w|@™) = ] p(w,|@™) (5)
ieD
Each of the component densities appearing in the above factorisation is represented
by a mixture distribution defined over a set of putative model-data associations
between the two sets of line-tokens

p(w;|8™) = 37 p(wilz;, ) P(z;|8™) (6)
JEM

The ingredients of the above mixture density are the component conditional meas-
urement densities p(w;|z;, ®(™) and the mixing proportions P(zj|‘l>(”)). The con-
ditional measurement densities represent the likelihood that the data-line meas-
urement w; originates from the model-line indexed j under the prevailing set of
transformation parameters (™). We use the shorthand notation ag-n) = P(z; |®(™)
to denote the mixing proportions. These quantities provide a natural mechanism
for assessing the significance of the individual model-lines in explaining the current
data-likelihood. For instance if aﬁn) approaches zero, then this indicates that there
is no matching line in the data. In other words, the mixture model provides a nat-
ural way of accommodating missing or occluded model segments. It is important
to stress that the mixing proportions are iteration dependent, being conditioned
upon the current parameter values.

Conventionally, maximum-likelihood parameters are estimated using the com-
plete log-likelihood for the available data

L@, w) = 3 Inp(w,|) (7)
i€D

In the case where the conditional measurement densities are univariate Gaussian,
then maximising the complete likelihood function corresponds to solving a system
of least-squares equations for the transformation parameters. By contrast, the
expectation step of the EM algorithm is aimed at estimating the log-likelihood
function when the data under consideration is incomplete. In our line-matching
example this incompleteness is a consequence of the fact that we do not know how
to associate tokens in the radar image and their counterparts in the cartographic
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map. In other words we need to average the log-likelihood over the space of poten-
tial line associations. In fact, it was Dempster, Laird and Rubin [3] who observed
that maximising the weighted log-likelihood was equivalent to maximising the
conditional expectation of the log-likelihood for a new parameter set given an old
parameter set. For our matching problem, maximisation of the expectation of the
conditional likelihood, i.e. E[L(®"*+Y, w)|®(), w)], is equivalent to maximising
the weighted log-likelihood function

Q@2 =3 N P(z;lw,, 8™) In p(w,|z;, 2" Y) (8)
i€D jEM

The a posteriori probabilities P(z;|w;, ®(")) play the role of matching weights in
the expected likelihood. We interpret these weights as representing the probability
of match between the data line indexed ¢ and the model-line indexed j. In other
words, they represent model-datum affinities. Using the Bayes rule, we can re-
write the a posteriori matching probabilities in terms of the components of the
conditional measurement densities appearing in the mixture model in equation (6)

o p(w;|z,, )

Zj’e/vt ag'?)p(WAZj'a o)

P(zw;, @) = 9)

The mixing proportions are computed by averaging the a posteriori probabilities
over the set of data-lines, i.e.

n 1 n
af”ﬂaZHMM@U (10)
1€D

In order to proceed with the development of a line registration process we
require a model for the conditional measurement densities, i.e. p(v_vi|zj,<1>(”)).
Here we assume that the required model can be specified in terms of a multivariate
Gaussian distribution. The random variables appearing in these distributions are
the error residuals for the position and orientation predictions of the jth model
line delivered by the current estimated transformation parameters. Accordingly
we write

p(v_Vi|Zj,‘I>( )) = mexp —§ei,j(<1>( NTs 161"]‘(@( ) (11)

In the above expression ¥ is the variance-covariance matrix for the vector of error-
residuals €; ;(®(™) = w, — F(z;, ®(")) between the components of the predicted
measurement vectors z;- and their counterparts in the data, i.e. w;. Formally, the
matrix is related to the expectation of the outer-product of the error-residuals i.e.
Y = Fle; j(®)e; ;(®)T]. Accordingly, we compute the following estimate of
D)

)

Sien zjeM P(Zj|V,Vi, (I)(n))ei,j(¢(n))€i7j(¢(n))T
Y iep Zje/\/t P(z;|w;, ®(m)

With these ingredients, and using the shorthand notation ¢

Y=

(12)

") = P(z;|w,, ™)

1]
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for the a posteriori matching probabilities, the expectation step of the EM al-
gorithm simply reduces to computing the weighted squared error criterion

Q@0 = —2 30 3 e (@) e (80) (1)
zGD JEM
In other words, the a posteriori probabilities qf ™) effectively regulate the con-
tributions to the likelihood function. Matches for which there is little evidence
contribute insignificantly, while those which are in good registration dominate.

2.3 Maximisation

The maximisation step aims to locate the updated the parameter-vector ®(+1)
that optimises the quantity Q(®"+1)|®(™), i.e.

e+ = arg max Q'(®|®™) (14)

We solve the implied weighted least-squares minimisation problem using the Leven-
berg Marquardt technique [8, 11]. This non-linear optimisation technique offers
a compromise between the steepest gradient and inverse Hessian methods. The
former is used when close to the optimum while the latter is used far from it. In
other words, when close to the optimum, parameter updating takes place with
step-size proportional to the gradient V@' (<I>|‘I>(“)). When far from the optimum
the optimisation procedure uses second-order information residing in the Hes-
sian, H, of Q' (tI>|<I>(”)) the corresponding step-size for the parameter vector ®

1V<I>Q(<I>|<I>(“)). Central to the Levenberg-Marquardt method is the idea of
exerting control over these two update modes using a positive parameter A. This
parameter defines the elements of the matrix A

Ak,l:{1+/\ ifk=1

15
1 otherwise (15)

According to the Levenberg-Marquardt method the step-size d¢; for the parameter
¢; is found by solving the following set of linear equations

ZAI@ 82 (<I>|(I) )5(25[ — 8Ql(q>|q)(n)) (16)

OprOPi el

The parameter ) is chosen to be large if VoQ'(®|®(™) > 0; in this case the
optimisation process operates in steepest gradient mode. If on the other hand,
VeQ'(®|®(™) < 0 then X is reduced towards zero; in this case the optimisa-
tion process operates in inverse Hessian mode.. When controlled effectively, this
method is less prone to local convergence than the standard steepest gradient
descent method, while offering efficiency gains over the inverse Hessian method.

3 Radar Data

The overall goal of the study reported in this paper is the registration of partial
radar images against a digital map. Figure la shows a typical radar image. The
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images are of rural areas in which the principal man-made linear-features avail-
able for matching are hedge-rows. The radar data is delivered as a series of non-
overlapping sweeps interspersed with substantial dead-regions. Within each sweep
there is both a significant oriented background texture and a systematic variation
in background intensity. Before we can commence with the registration process, we
must extract a set of line-segments for matching. Notwithstanding the difficulties
associated with the partial sweeps, there are a number of obstacles to the character-
isation of hedges from their radar reflections in speckle noise. In the first instance,
the structures themselves are of variable width. Moreover, there are position and
orientation dependant shadow artifacts which introduce an anti-symmetric com-
ponent into the symmetric intensity profile of idealised hedge reflections. It is
for these reasons that the hedge radar reflections are not well characterised by
idealised even-symmetry fixed-width line-detectors such as the directional second
derivative of Gaussian or the cosine-phase Gabor filter. Instead, we capture the
variable width and mixed symmetry structure of the intensity profiles using a bank
of sine and cosine phase Gabor filters of multiple orientation and scale. Here we
adopt a statistical approach based on principal components analysis to find linear
combination of these filter responses for optimal hedge-enhancement. Figure 1b
shows the enhanced hedge-features obtained by applying the filter combinations
to the raw radar image.

The next task is the re-enforcement of the filter responses to deliver connected
linear-features. This second processing step is performed using a Bayesian relaxa-
tion scheme which utilises a statistical model of the filter-bank response [5]. The
linear filter response combinations are used as input to a relaxation operator which
iterates to enhance local connectivity using a dictionary of local line-structures [4].
Once stable line features are to hand, candidate line-segments may be extracted.
Figure 1c shows the detected straight-line segments. Although most of the genuine
hedge-features are detected, there is a significant population of extraneous lines.

4 Matching Experiments

We are now in a position to demonstrate the effectiveness of our registration pro-
cess. Figure 2 shows the line registration process iterating from an initial guess
to the final match. The red lines overlayed on the original radar image are the
linear segments from the digital map. In this example, the initial parameters
are misregistered in scale, orientation and position. The algorithm converges in
approximately six iterations.

In iterating to the final solution, we have applied the Levenberg-Marquardt
technique to the expected data log-likelihood Q'(®("+1)|®(™) to extract optimal
parameter values at each iteration. One of the well-documented shortcomings of
the EM algorithm is its local convergence properties. However, our motivation in
adopting the Levenberg-Marquardt method in favour of straightforward steepest
gradient have been to circimvent some of the problems of local convergence. In
order to understand the limitations of our registration process, we have there-
fore investigated the structure of the log-likelihood function Q'(®+1|®(") as a
function of the scale, rotation and translation parameters. Figures 3a shows the
expected log-likelihood as a function of scale and translation, while Figure 3b is a
plot of expected log-likelihood as a function of rotation and scale. It is interesting
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to note that while the scale-translation behaviour is unimodal, the rotation-scale
plot contains local sub-optima. Closer inspection of the Figure 3b reveals that
these sub-optima are associated with rotations of 7. This rotation ambiguity is
attributable to the fact that the hedge-rows in the digital map are organised into
rectangular field-structures.

Our final set of experiments aims to evaluate the sensitivity of our method to
random perturbations of the line-segments. Here we aim to illustrate the noise
sensitivity of the match when the endpoints of the line-segments are subjected
to Gaussian position errors of known variance. Figure 4 shows the fraction of
lines correctly matched as a function of the line-end position error expressed as a
fraction of the average interline spacing. The three curves correspond to different
levels of initial line-displacement from the ground-truth solution. The upper curve
corresponds to an average initial displacement which is 10% of the average inter-
line spacing, in the case of the middle curve the displacement is 50% while in the
case of the lower curve the displacement is 100%. The main conclusions from this
plot is that the registration accuracy falls linearly with random measurement errors
and that the method can not tolerate initialisation errors significantly greater then
50%.
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Figure 1: Extracting line-segments from the radar data: a) Original radar image
(note how the sweeps fragment the image features and the highly textured nature of
image data); b) enhanced line-features after multi-channel filtering; c) the extracted
line-segments

5 Conclusions

We have detailed a technique for registering incomplete radar images which uses
the EM algorithm to estimate transformation parameters using measurements
provided by line-segments. The registration technique is only susceptible to local
convergence if the initial rotation parameter is poorly estimated. In-fact, the data
log- likelihood function is unimodal in scale and translation. We aim to minim-
ise the difficulties associated with local convergence by adopting the Levenberg-
Marquardt optimisation method. There are clearly a number of ways in which the
work described in this paper can be extended. Although several authors have re-
ported line registration algorithms [2, 11] these are invariably based on essentially
ad hoc cost functions. One natural extension of our methodology is the recovery
of 3D pose from 2D images [6]. Finally, the EM framework reported in this paper
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Figure 2: Initial, third and final iterations of the map-fitting process. The algorithm
converges after siz iterations.
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Figure 3: The data log-likelihood function: a) as a function of translation and scale
(note that the function is unimodal); b) as a function of scale and rotation (note
that there are sub-optima associated with rotations of the model by angle multiples

of %)

is naturally extensible to multiple model matching [9].
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Figure 4: Sensitivity to noise and displacement. From top to bottom, the three
curves show the results of displacing the initial estimate by 10%, 50% and 100%
of the average interline-spacing of the registered model. The noise is measured as
the fractional random displacement error for the line-endings.

[6]

[11]

[12]

[13]

Hornegger J. and Niemann H., “Statistical Learning Localisation and Identification
of Objects” Proceedings Fifth International Conference on Computer Vision, pp.
914-919, 1995.

Jordan M.I. and Jacobs R.A, “Hierarchical Mixtures of Experts and the EM Al-
gorithm”, Neural Computation, 6, pp. 181-214, 1994.

Lavallee S. and Szeliski R., “Recovering the Position and Orientation of Free-form
Objects from Image Contours using 3D Distance Maps”, IEEE PAMI, 17, pp. 378-
390, 1995.

Maclean J. and Jepson A, “Recovery of Egomotion and Segmentation of Independ-
ent Object Motion using the EM Algorithm”, Proceedings BMVC, pp. 175-184,
1994.

Moghaddam B. and Pentland A., “Probabilistic Visual Learning for Object Detec-
tion”, Proceedings of the Fifth International Conference on Computer Vision, pp.
786-793, 1995.

Phong T.Q., Horaud R., Yassine A. and Tao P.D., “Object Pose from 2-D to 3-D
Point and Line Correspondences”, International Journal of Computer Vision, 15,
pp- 225-243, 1995.

Wilson R.C., Evans A.N. and Hancock E.R., “Relational Matching by Discrete
Relaxation”, Image and Vision Computing, 13, pp. 411-421, 1995.

Viola P. and Wells W., “Alignment by Maximization of Mutual Information”, Pro-
ceedings of the Fifth International Conference on Computer Vision, pp. 16-23, 1995.



