
Surface Approximation from IndustrialSEM Images�A.J.Lacey, N.A.Thacker and R.B.YatesDept. of Electronic and Electrical EngineeringUniversity of She�eldMappin St., She�eld, S1 3JDUnited Kingdomemail: a.lacey@sheffield.ac.ukAbstractWe are currently involved in an industrial project to recover depth in-formation from stereo image pairs retrieved using a scanning electronmicroscope, (SEM). Feature based approaches to stereo provide accu-rate disparity estimations, however the quantity of estimates recoveredis small (typically 1-2% of the image). If a continuous approximation tothe surface is to be reconstructed, as requested by potential customers,more data has to be recovered.Our approach involves using the disparity estimates from a featurebased stereo algorithm to constrain a function �tting process. As-suming the image may be represented by an iterated facet model, thealgorithm attempts to �t piecewise polynomials between the featuredisparity estimates, which describe the mapping of grey-levels fromthe left to right image along epi-polars. The problems of illuminationvariation between the left and right images have been addressed usinga modi�cation to rank-order �ltering which we call `soft' ranking. The�tted functions are then used to calculate intermediate disparities.1 IntroductionThe limited application of machine vision algorithms to industrial problems issomething the EPSRC Industrial Machine Vision (IMV) initiative is attemptingto address. We are involved in an IMV project to develop and transfer our stereodepth estimation algorithms for industrial collaborators, who are interested insurface approximations from SEM images. Our collaborators have the followingrequirements of the project;� An estimate of disparity at every pixel location,� Disparity estimates with an accuracy of 0:01 of a pixel,�This work is supported by the IMV EPSRC grant No. GR/K45272.
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� Minimum of user intervention, preferably a single button press.One of the most direct ways of recovering 3-dimensional information from im-ages is by stereopsis. Previously, we have reported upon an algorithm to performstereo depth estimation using stretch correlation [4]. This algorithm is a cross-correlation process which compares information rich areas of the two images, whilemodelling the warping e�ects encountered in di�cult stereo problems, e�ectivelyrelaxing the front-o-parallel constraint. This algorithm was development of thePMF [7] feature based stereo algorithm, embodying the constraints of PMF in ancomputationally e�cient area based algorithm.However, given the typical quantities of features present in images, stretchcorrelation, (and any other feature based stereo algorithm), provides relativelysparse estimates of depth. For many applications, such as surface approximation, itis desirable that continuous depth data is presented. With such demands attemptshave been made to augment the depth estimates from stereo matching approacheswith results from other algorithms such as surface interpolation [8] and binocularshape-from-shading [1].1.1 Multi-Stage AlgorithmOur starting point for this work has been the auto-calibration [5] and stretch cor-relation [4] algorithms. The requirements of this project have enabled us to furtherthe stretch correlation algorithm and integrate it as part of complete approach tosurface approximation. An outline of this multi-stage algorithm is given in �gure 1.
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Figure 1: Overview of Algorithmic Stages. D represents the disparity image ateach stage, moving left to right.Once the stereo images have been calibrated they are recti�ed in order to aligntheir rasters, taking care not to degrade the information content of the images.The stretch correlation algorithm is then used to recover sparse disparity estimates,denoted Dsc. These estimates are passed to the next stage which attempts to �tnth order polynomials to the left image data, between pairs of points in Dsc on the
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same epi-polar, in order to predict data in the right image. The functions are thenused to recover intermediate disparities estimates at �xed points along the functionrelative to the left image. Having already identi�ed surface discontinuities usingthe stretch correlation algorithm, it seems appropriate to �t smooth functionsbetween these estimates. The �nal stage is used to `close' the surface by averaginglocal areas of the image and is essentially the algorithm described by Grimson [8].2 Stretch CorrelationThe stretch correlation algorithm is an area based solution to the stereo problem,matching discrete blocks in the left image to blocks in the right. However, focusingthe matching process on information rich areas of the image (those containing non-horizontal edges) improves the robustness of the approach. Further, by warpingblocks (stretching or shearing the right image blocks) rotation e�ects betweenviews may be modelled, improving the disparity accuracy.

34.2

34.4

34.6

34.8

35

35.2

35.4

35.6

35.8

36

36.2

36.4

36.6

36.8

37

-5 -4 -3 -2 -1 0 1 2 3 4
34.2

34.4

34.6

34.8

35

35.2

35.4

35.6

35.8

36

36.2

36.4

36.6

36.8

37

-5 -4 -3 -2 -1 0 1 2 3 4

D
ep

th

X Position X Position

(b) sub-pixel disparity(a) pixel disparityFigure 2: (a) Original estimates of disparity, (b) disparity estimates recovered bypost-matching Canny edges.Due to compromises built into the algorithm for the purposes of hardwareimplementation, the stretch correlation algorithm constrains the estimation of edgelocation to the nearest pixel and assumes that the stereo disparities lie on matcheddisparity planes. The e�ects of these compromises are clearly demonstrated bygraph (a) of �gure 2 which shows a horizontal cross-section through some disparityestimates recovered with this approach. The planes of depth, shown as horizontalquantisation banding, are caused by the disparity quantisation. The skewed linearcorrelations, shown as diagonal correlations in the graph show how the disparityestimates are constrained to lie on �tted planes.It is a relative straight-forward matter to modify the algorithm in order toremove these constraints. In the original algorithm edge enhancement was per-formed by thresholding a horizontally di�erenced image, providing pixel accurateedge locations. This data is used both to direct the block matching process andalso to calculate pixel disparities from the matched block disparities. By replacingthe edge enhancement algorithm with Canny edge detection the edges may be
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located with much greater accuracy, (approximately 0:1 pixel). Matching theseedges using the results from the stretch correlation algorithm improves the accu-racy of the disparity estimates and removes the planarity constraint imposed bypixelation.The plot of �gure 2(b) shows disparity estimates recovered using matchedCanny edges, extracted from the same image pair as �gure 2(a). With this mod-i�cation the stretch correlation algorithm provides accurate disparity estimatesgained from matched Canny edges, while using a computationally e�cient corre-lation based framework.3 Piecewise Surface ApproximationThe estimates of disparity recovered using the stretch correlation algorithm areknown to be reliable and well located, these points have been denotedDsc. It is thedistinct nature of the features used which enables this algorithm to reliably matchregions in the left and right images. Attempting to perform a similar process atall points in the images would result in high numbers of incorrect matches, leadingto unreliable estimates of disparity.If it is assumed that the surface structure between points in Dsc is smooth, thenit follows that the disparity of points between those in Dsc will also vary smoothly.Indeed given the data being analysed by our collaborators, (crystal structures,see �gure 6), a facet model of near planar surfaces is a justi�able hypothesis.By approximating the surface between these estimates using smooth functions itshould possible to recover disparity estimates at points along the function.Piecewise polynomials are �tted between points in Dsc using a least-squaresmetric. The algorithm estimates the function parameters which most accuratelymap data in the left image to data in the right. The images have already beenrecti�ed so that the left and right rasters align. Horizontally consecutive pairs ofpoints in Dsc are used to constrain the ends of the �t, however the �tting processstops short of these points as the behaviour of grey-levels at such discontinuitiesis unreliable.3.1 Rank order �lteringThe process of matching grey-levels in the left and right images is inhibited bythe e�ective variation in image illumination caused by the change in viewpoint.Consequently, we would not expect to be able to simply match image grey-levelsdirectly using a least-squares approach, except under very limited circumstances,i.e. photogrammetric invariance. However, some authors [3] have applied rankingschemes to stereo images in order to regain much of this property.The process of image ranking is analogous to powerful ranking techniques usedin statistical analysis. Comparing the rank of data sets is appropriate if the qual-itative behaviour of the sets is similar but the absolute quantities are unreliable.We have chosen to investigate this approach to see if this assumption is justi�ed.The ranking scheme adopted by O'Neil [3] replaces the grey-level of each pixelwith the total number of neighbouring grey-levels it is greater than. This value
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is called the rank of the pixel, and we will term this approach hard ranking. Theweighting scheme for this is shown in �gure 3(a).
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Figure 3: Weighting schemes for (a) hard rank-order �ltering, (b) soft rank-order�lteringWhat should result is an image whose values relate to the statistical signi�canceof the grey-levels in the original image. Pixels from locally smooth regions in theimage will be replaced by mid-values, pixels at discontinuities will be replaced byextreme values.1. However, we have found that hard ranking is very sensitive tonoise. Therefore, using a probabilistic interpretation of this ranking process asa guide, we have modi�ed this scheme to take account of image noise, replacingthe hard cuto� with a continuous ramp, see �gure 3(b). The width of the rampis speci�ed directly by the expected error on the grey-level measurements due toquantisation. For an example of the visual e�ects of hard and soft ranking see�gure 4.
(a) Original im-age region (b) Hard rankedimage region (c) Soft rankedimage regionFigure 4: Example rank order �lter results on a section of a Lego brick houseIn order to demonstrate the bene�t of rank-order �ltering, an arti�cial surfacehas been shaded using two di�erent illumination sources. The shading has beenperformed in order to model variations in the left and right images due to a changein viewpoint. In both cases the shading was performed using a point Lambertianillumination model. In the �rst case the slant and tilt of the light source, relativeto the surface were slant = 0:5 radians, tilt = 0:5 radians. In the second case1The actual values depend upon the size of the window being used, typically 11 � 11
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slant = 1:0 radian, tilt = 1:0 radian, providing an approximate 30o rotationbetween the two images, �gure 5 shows the resulting 2D images. In the �nalimages, �gures 5(b) and 5(c), the illuminated surfaces were both sampled andquantised in a manner typical of a CCD camera.

(a) (b) (c) (d) (e)Figure 5: 2D views of illuminated surfaceThe image of �gure 5(d) shows the result of subtracting (c) from (b). Fig-ure 5(e) shows the result of rank-order �ltering (c) and (b) and then performingsubtraction. As may be observed, the rank ordered di�erenced image, �gure 5(e),behaves more like a random variable than the di�erence of the original images, �g-ure 5(d), which is badly a�ected by the central illumination artifact. Further, therank ordering process increases the information ratio, (shown below), from approx-imately 1 to 10, suggesting a signi�cant improvement in the S/N ratio. Finally theoriginal di�erenced image contains an o�set, something which the ranking processremoves.Information ratio = Dynamic range of original imagesDynamic range of differenced imageThe variance on the ranked image, where n is the dimension of the rankingkernel in this case 11, becomes;V ar (R (Ii)) = R (Ii)� R (Ii)2n2 V ar�arcsin�2R (Ii)n2 � 1�� = kHowever, generally for a smooth continuous surface;R (Ii)n2 � 0:5 ) V ar (R (Ii)) = kObviously this limited experiment does not completely model the stereo imag-ing process. The consequences of projection transformations such as self occlusion,which also a�ect the reliability of the matching process have not been been mod-elled. Ranking produces data which is sensitive only to qualitative variations inthe input image. Thus a ranking process generates data suitable for grey-level�tting provided that the ranking kernel is de�ned over equivalent sections of thedata in the two images.
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4 Surface AveragingThe function �tting process does not completely close the surface. Functionscannot be �tted unless the separation between the disparity estimates of Dsc issu�ciently large. It is also possible for the �t to terminate incorrectly. Thereforethe �nal stage in the algorithm is to close the surface using a simple local averagingprocess.The algorithm described by Grimson [8] attempts to �t the smoothest surface2across �xed points in the image. We have implemented this algorithm as a localsmoothing algorithm, using a simple 3� 3 Laplacian �lter, which can be shown tobe mathematically equivalent. This operation is only used to interpolate at pointswhere no disparity estimate has previously been made.5 DemonstrationAs an example of what we are currently able to achieve using this technique,the images of �gure 6 have been analysed. These image were provided by ourcollaborators and are typical of the images they wish to analyse. For the purposesof this demonstration the surface approximation has been performed within theregion identi�ed by the white box in �gure 6(a).

(a) (b)Figure 6: Typical SEM image pair, (a) is used as the left image (white rectangleshows region of interest) and (b) is used as the right5.1 Image captureThe SEM images were captured using a back-scattered electron (BSE) beam mi-croscope. The stereo pairs are constructed by capturing one image and then tiltingthe table on which the structure is laid by approximately 5o, before capturing thesecond image.2The surface with the smallest second derivative, (an elasticity constraint).
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5.2 Camera calibrationThe images in �gure 6 were recovered using an unknown camera system. In orderfor absolute depth information to be recovered and the bene�t of epi-polar geom-etry to be utilised, it was �rst necessary to calibrate the images. To do this thecalibration process described by Thacker [5] was used. This modular approach tocalibration allows the epi-polar error between matched image corners to be min-imised, permitting the auto-calibration of arbitrary image pairs. The algorithm iscurrently using a physical camera model which can include terms for parameterssuch as focal length, the centre of the C.C.D. elements and radial distortion.5.3 Disparity resultsThe plot in �gure 7(b), shows the output from the stretch correlation process.The plots in �gures 7(c), 7(d) and 7(e) show the results of �tting �rst, secondand third order models, respectively to the data between the disparity estimatesin �gure 7(b). The image of �gure 7(a) shows the region of the left image used,re-mapped to compliment the disparity plots.6 Future WorkWe have already designed, fabricated and tested a VLSI device which is capableof accelerating a large percentage of the stretch correlation algorithm [6]. We arecurrently developing an integrated system, incorporating this and other devices,in order to accelerate many of our vision algorithms. We then intend to explorethe bene�ts a�orded by temporal sequence stereo.The function �tting is able to �t parameters once the order of the model hasbeen de�ned. However, as is demonstrated by the plots in the �gures 7(c), 7(d)and 7(e) the appropriate model order is data dependent. Because of the planarnature of the surfaces in this data the linear model seems the most appropriate,although in some areas a second order �t is justi�ed. For a more generic �ttingprocess the technique must be able to select the order of the model itself, using onlythe data. A possible solution to the problem of automatic model selection using theBhattacharyya metric is described in the paper [2]. In future we hope to integratethis process into the function �tting algorithm and evaluate its performance.The camera calibration parameters used, do not directly relate to physical char-acteristics of the SEM, however a useful camera model is still achieved and is usedto rectify the images. Our collaborators are providing a more suitable descriptionof the SEM setup and this will be integrated into the calibration process.In the �nal stages of the project we will be advising our collaborators on howto integrate the algorithms into their software.7 ConclusionsWe have demonstrated how an existing stereo algorithm may be applied to a realindustrial vision problem. In order to increase the density of disparity estimates, afunction �tting process has been developed, integrating with the stretch correlation
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(a) ROI from left image
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(b) Disparity estimates from stretch cor-relation −3
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(c) Fitting results using �rst order func-tion
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(d) Fitting results using second orderfunction −3
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(e) Fitting results using third orderfunctionFigure 7: Disparity estimatesalgorithm. By rank order �ltering the data, the �tting process is made more stableas the data attains the desired properties, i.e. approximating photogrammetricinvariance with uniform variance. We would advocate such preprocessing beforeany correlation driven algorithms, e.g. auto-correlation based corner detection.The user has requested accurate, dense disparity estimates achieved with theminimum of operator intervention. We are currently able to provide a low main-
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tenance calibration algorithm and a process which provides dense estimates ofdisparity with varying degrees of accuracy. The most accurate of these measure-ments we now estimate to be in the region of 0:1 pixels. However, we do notbelieve it possible to provide highly accurate estimates of disparity at all pointsin the image. In fact, after discussions with our collaborators, we do not believethat such a requirement is actually necessary. Therefore we have recommendedthat quantitative measurements of the data are made only at feature point dispar-ity estimates, Dsc, and that all other disparity estimates are used for qualitativeanalysis only.8 Software AvailabilityIn order to evaluate these algorithms for yourself, Sun Sparc binary demonstra-tions are available for the calibration, image recti�cation, stretch correlation, softranking and function �tting algorithms from :http://www.shef.ac.uk/~eee/esg/research/tina.htmlReferences[1] Jones A.G. and Taylor C.J. Scale space surface recovery using binocular shad-ing and stereo information. In Proceedings of the BMVC, volume 1, pages77{86. BMVA, 1995.[2] Thacker N.A. Prendergast D.J. and Rockett P.I. B-�tting: A statistical esti-mation technique with automatic parameter selection. In Proceedings of theBMVC, 1996.[3] O'Neil M.A. and Denos M.I. Practical approach to the stereomatching of urbanimagery. Image and Vision Compt., 10(2):89{98, March 1992. 92.[4] Lane R.A. Thacker N.A. and Seed N.L. Stretch correlation as a real-timealternative to feature based stereo matching algorithms. Image and VisionComputing, 12(4):203{212, 1994.[5] Thacker N.A. and Mayhew J.E.W. Optimal combination of stereo camera cali-bration from arbitrary stereo images. Image and Vision Computing, 9(1):27{32,February 1991.[6] Lane R.A. Thacker N.A. Seed N.L. and Ivey P.A. A stereo vision processor.In Proceedings of the CICC. IEEE, May 1995.[7] Pollard S.B. Indentifying Correspondences in Binocular Stereo. PhD thesis,Psychology : AIVRU, University of She�eld, 1985.[8] Grimson W.E.L. An implementation of a computational theory of visual sur-face interpolation. Computer Vision, Graphics and Image Processing, 22:39{69,1983.


