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Abstract

We are currently involved in an industrial project to recover depth in-
formation from stereo image pairs retrieved using a scanning electron
microscope, (SEM). Feature based approaches to stereo provide accu-
rate disparity estimations, however the quantity of estimates recovered
is small (typically 1-2% of the image). If a continuous approximation to
the surface is to be reconstructed, as requested by potential customers,
more data has to be recovered.

Our approach involves using the disparity estimates from a feature
based stereo algorithm to constrain a function fitting process. As-
suming the image may be represented by an iterated facet model, the
algorithm attempts to fit piecewise polynomials between the feature
disparity estimates, which describe the mapping of grey-levels from
the left to right image along epi-polars. The problems of illumination
variation between the left and right images have been addressed using
a modification to rank-order filtering which we call ‘soft’ ranking. The
fitted functions are then used to calculate intermediate disparities.

1 Introduction

The limited application of machine vision algorithms to industrial problems is
something the EPSRC Industrial Machine Vision (IMV) initiative is attempting
to address. We are involved in an IMV project to develop and transfer our stereo
depth estimation algorithms for industrial collaborators, who are interested in
surface approximations from SEM images. Our collaborators have the following
requirements of the project;

e An estimate of disparity at every pixel location,

e Disparity estimates with an accuracy of 0.01 of a pixel,
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e Minimum of user intervention, preferably a single button press.

One of the most direct ways of recovering 3-dimensional information from im-
ages is by stereopsis. Previously, we have reported upon an algorithm to perform
stereo depth estimation using stretch correlation [4]. This algorithm is a cross-
correlation process which compares information rich areas of the two images, while
modelling the warping effects encountered in difficult stereo problems, effectively
relaxing the front-o-parallel constraint. This algorithm was development of the
PMEF [7] feature based stereo algorithm, embodying the constraints of PMF in an
computationally efficient area based algorithm.

However, given the typical quantities of features present in images, stretch
correlation, (and any other feature based stereo algorithm), provides relatively
sparse estimates of depth. For many applications, such as surface approximation, it
is desirable that continuous depth data is presented. With such demands attempts
have been made to augment the depth estimates from stereo matching approaches
with results from other algorithms such as surface interpolation [8] and binocular
shape-from-shading [1].

1.1 Multi-Stage Algorithm

Our starting point for this work has been the auto-calibration [5] and stretch cor-
relation [4] algorithms. The requirements of this project have enabled us to further
the stretch correlation algorithm and integrate it as part of complete approach to
surface approximation. An outline of this multi-stage algorithm is given in figure 1.
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Figure 1: Overview of Algorithmic Stages. D represents the disparity image at
each stage, moving left to right.

Once the stereo images have been calibrated they are rectified in order to align
their rasters, taking care not to degrade the information content of the images.
The stretch correlation algorithm is then used to recover sparse disparity estimates,
denoted Dg4.. These estimates are passed to the next stage which attempts to fit
nth order polynomials to the left image data, between pairs of points in Dg. on the
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same epi-polar, in order to predict data in the right image. The functions are then
used to recover intermediate disparities estimates at fixed points along the function
relative to the left image. Having already identified surface discontinuities using
the stretch correlation algorithm, it seems appropriate to fit smooth functions
between these estimates. The final stage is used to ‘close’ the surface by averaging
local areas of the image and is essentially the algorithm described by Grimson [8].

2 Stretch Correlation

The stretch correlation algorithm is an area based solution to the stereo problem,
matching discrete blocks in the left image to blocks in the right. However, focusing
the matching process on information rich areas of the image (those containing non-
horizontal edges) improves the robustness of the approach. Further, by warping
blocks (stretching or shearing the right image blocks) rotation effects between
views may be modelled, improving the disparity accuracy.
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Figure 2: (a) Original estimates of disparity, (b) disparity estimates recovered by
post-matching Canny edges.

Due to compromises built into the algorithm for the purposes of hardware
implementation, the stretch correlation algorithm constrains the estimation of edge
location to the nearest pixel and assumes that the stereo disparities lie on matched
disparity planes. The effects of these compromises are clearly demonstrated by
graph (a) of figure 2 which shows a horizontal cross-section through some disparity
estimates recovered with this approach. The planes of depth, shown as horizontal
quantisation banding, are caused by the disparity quantisation. The skewed linear
correlations, shown as diagonal correlations in the graph show how the disparity
estimates are constrained to lie on fitted planes.

It is a relative straight-forward matter to modify the algorithm in order to
remove these constraints. In the original algorithm edge enhancement was per-
formed by thresholding a horizontally differenced image, providing pixel accurate
edge locations. This data is used both to direct the block matching process and
also to calculate pixel disparities from the matched block disparities. By replacing
the edge enhancement algorithm with Canny edge detection the edges may be
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located with much greater accuracy, (approximately 0.1 pixel). Matching these
edges using the results from the stretch correlation algorithm improves the accu-
racy of the disparity estimates and removes the planarity constraint imposed by
pixelation.

The plot of figure 2(b) shows disparity estimates recovered using matched
Canny edges, extracted from the same image pair as figure 2(a). With this mod-
ification the stretch correlation algorithm provides accurate disparity estimates
gained from matched Canny edges, while using a computationally efficient corre-
lation based framework.

3 Piecewise Surface Approximation

The estimates of disparity recovered using the stretch correlation algorithm are
known to be reliable and well located, these points have been denoted D,.. It is the
distinct nature of the features used which enables this algorithm to reliably match
regions in the left and right images. Attempting to perform a similar process at
all points in the images would result in high numbers of incorrect matches, leading
to unreliable estimates of disparity.

If it is assumed that the surface structure between points in Dy, is smooth, then
it follows that the disparity of points between those in D, will also vary smoothly.
Indeed given the data being analysed by our collaborators, (crystal structures,
see figure 6), a facet model of near planar surfaces is a justifiable hypothesis.
By approximating the surface between these estimates using smooth functions it
should possible to recover disparity estimates at points along the function.

Piecewise polynomials are fitted between points in D, using a least-squares
metric. The algorithm estimates the function parameters which most accurately
map data in the left image to data in the right. The images have already been
rectified so that the left and right rasters align. Horizontally consecutive pairs of
points in Dy, are used to constrain the ends of the fit, however the fitting process
stops short of these points as the behaviour of grey-levels at such discontinuities
is unreliable.

3.1 Rank order filtering

The process of matching grey-levels in the left and right images is inhibited by
the effective variation in image illumination caused by the change in viewpoint.
Consequently, we would not expect to be able to simply match image grey-levels
directly using a least-squares approach, except under very limited circumstances,
i.e. photogrammetric invariance. However, some authors [3] have applied ranking
schemes to stereo images in order to regain much of this property.

The process of image ranking is analogous to powerful ranking techniques used
in statistical analysis. Comparing the rank of data sets is appropriate if the qual-
itative behaviour of the sets is similar but the absolute quantities are unreliable.
We have chosen to investigate this approach to see if this assumption is justified.
The ranking scheme adopted by O’Neil [3] replaces the grey-level of each pixel
with the total number of neighbouring grey-levels it is greater than. This value
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is called the rank of the pixel, and we will term this approach hard ranking. The
weighting scheme for this is shown in figure 3(a).
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Figure 3: Weighting schemes for (a) hard rank-order filtering, (b) soft rank-order
filtering

What should result is an image whose values relate to the statistical significance
of the grey-levels in the original image. Pixels from locally smooth regions in the
image will be replaced by mid-values, pixels at discontinuities will be replaced by
extreme values.'. However, we have found that hard ranking is very sensitive to
noise. Therefore, using a probabilistic interpretation of this ranking process as
a guide, we have modified this scheme to take account of image noise, replacing
the hard cutoff with a continuous ramp, see figure 3(b). The width of the ramp
is specified directly by the expected error on the grey-level measurements due to
quantisation. For an example of the visual effects of hard and soft ranking see

figure 4.

(a) Original im- (b) Hard ranked (c) Soft ranked
age region image region image region

Figure 4: Example rank order filter results on a section of a Lego brick house

In order to demonstrate the benefit of rank-order filtering, an artificial surface
has been shaded using two different illumination sources. The shading has been
performed in order to model variations in the left and right images due to a change
in viewpoint. In both cases the shading was performed using a point Lambertian
illumination model. In the first case the slant and tilt of the light source, relative
to the surface were slant = 0.5 radians, tilt = 0.5 radians. In the second case

IThe actual values depend upon the size of the window being used, typically 11 x 11
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slant = 1.0 radian, tilt = 1.0 radian, providing an approximate 30° rotation
between the two images, figure 5 shows the resulting 2D images. In the final
images, figures 5(b) and 5(c), the illuminated surfaces were both sampled and
quantised in a manner typical of a CCD camera.
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Figure 5: 2D views of illuminated surface

The image of figure 5(d) shows the result of subtracting (c) from (b). Fig-
ure 5(e) shows the result of rank-order filtering (c¢) and (b) and then performing
subtraction. As may be observed, the rank ordered differenced image, figure 5(e),
behaves more like a random variable than the difference of the original images, fig-
ure 5(d), which is badly affected by the central illumination artifact. Further, the
rank ordering process increases the information ratio, (shown below), from approx-
imately 1 to 10, suggesting a significant improvement in the S/N ratio. Finally the
original differenced image contains an offset, something which the ranking process
removes.

. . Dynamic range of original images
Information ratio =

Dynamic range of dif ferenced image

The variance on the ranked image, where n is the dimension of the ranking
kernel in this case 11, becomes;

Var (R(I;)) = R(I;) — R(L)” Var (arcsin <2R (L) _ 1)) =k

n2

However, generally for a smooth continuous surface;

R(I;)

n2

~05 = Var(R()) = k

Obviously this limited experiment does not completely model the stereo imag-
ing process. The consequences of projection transformations such as self occlusion,
which also affect the reliability of the matching process have not been been mod-
elled. Ranking produces data which is sensitive only to qualitative variations in
the input image. Thus a ranking process generates data suitable for grey-level
fitting provided that the ranking kernel is defined over equivalent sections of the
data in the two images.
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4 Surface Averaging

The function fitting process does not completely close the surface. Functions
cannot be fitted unless the separation between the disparity estimates of Dy, is
sufficiently large. It is also possible for the fit to terminate incorrectly. Therefore
the final stage in the algorithm is to close the surface using a simple local averaging
process.

The algorithm described by Grimson [8] attempts to fit the smoothest surface?
across fixed points in the image. We have implemented this algorithm as a local
smoothing algorithm, using a simple 3 x 3 Laplacian filter, which can be shown to
be mathematically equivalent. This operation is only used to interpolate at points
where no disparity estimate has previously been made.

5 Demonstration

As an example of what we are currently able to achieve using this technique,
the images of figure 6 have been analysed. These image were provided by our
collaborators and are typical of the images they wish to analyse. For the purposes
of this demonstration the surface approximation has been performed within the
region identified by the white box in figure 6(a).

(@ (b)

Figure 6: Typical SEM image pair, (a) is used as the left image (white rectangle
shows region of interest) and (b) is used as the right

5.1 Image capture

The SEM images were captured using a back-scattered electron (BSE) beam mi-
croscope. The stereo pairs are constructed by capturing one image and then tilting
the table on which the structure is laid by approximately 5°, before capturing the
second image.

2The surface with the smallest second derivative, (an elasticity constraint).
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5.2 Camera calibration

The images in figure 6 were recovered using an unknown camera system. In order
for absolute depth information to be recovered and the benefit of epi-polar geom-
etry to be utilised, it was first necessary to calibrate the images. To do this the
calibration process described by Thacker [5] was used. This modular approach to
calibration allows the epi-polar error between matched image corners to be min-
imised, permitting the auto-calibration of arbitrary image pairs. The algorithm is
currently using a physical camera model which can include terms for parameters
such as focal length, the centre of the C.C.D. elements and radial distortion.

5.3 Disparity results

The plot in figure 7(b), shows the output from the stretch correlation process.
The plots in figures 7(c), 7(d) and 7(e) show the results of fitting first, second
and third order models, respectively to the data between the disparity estimates
in figure 7(b). The image of figure 7(a) shows the region of the left image used,
re-mapped to compliment the disparity plots.

6 Future Work

We have already designed, fabricated and tested a VLSI device which is capable
of accelerating a large percentage of the stretch correlation algorithm [6]. We are
currently developing an integrated system, incorporating this and other devices,
in order to accelerate many of our vision algorithms. We then intend to explore
the benefits afforded by temporal sequence stereo.

The function fitting is able to fit parameters once the order of the model has
been defined. However, as is demonstrated by the plots in the figures 7(c), 7(d)
and 7(e) the appropriate model order is data dependent. Because of the planar
nature of the surfaces in this data the linear model seems the most appropriate,
although in some areas a second order fit is justified. For a more generic fitting
process the technique must be able to select the order of the model itself, using only
the data. A possible solution to the problem of automatic model selection using the
Bhattacharyya metric is described in the paper [2]. In future we hope to integrate
this process into the function fitting algorithm and evaluate its performance.

The camera calibration parameters used, do not directly relate to physical char-
acteristics of the SEM, however a useful camera model is still achieved and is used
to rectify the images. Our collaborators are providing a more suitable description
of the SEM setup and this will be integrated into the calibration process.

In the final stages of the project we will be advising our collaborators on how
to integrate the algorithms into their software.

7 Conclusions

We have demonstrated how an existing stereo algorithm may be applied to a real
industrial vision problem. In order to increase the density of disparity estimates, a
function fitting process has been developed, integrating with the stretch correlation
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(a) ROI from left image

(b) Disparity estimates from stretch cor- (c) Fitting results using first order func-
relation tion

(d) Fitting results using second order (e) Fitting results using third order
function function

Figure 7: Disparity estimates

algorithm. By rank order filtering the data, the fitting process is made more stable
as the data attains the desired properties, i.e. approximating photogrammetric
invariance with uniform variance. We would advocate such preprocessing before
any correlation driven algorithms, e.g. auto-correlation based corner detection.
The user has requested accurate, dense disparity estimates achieved with the
minimum of operator intervention. We are currently able to provide a low main-
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tenance calibration algorithm and a process which provides dense estimates of
disparity with varying degrees of accuracy. The most accurate of these measure-
ments we now estimate to be in the region of 0.1 pixels. However, we do not
believe it possible to provide highly accurate estimates of disparity at all points
in the image. In fact, after discussions with our collaborators, we do not believe
that such a requirement is actually necessary. Therefore we have recommended
that quantitative measurements of the data are made only at feature point dispar-
ity estimates, Dg., and that all other disparity estimates are used for qualitative
analysis only.

8 Software Availability

In order to evaluate these algorithms for yourself, Sun Sparc binary demonstra-
tions are available for the calibration, image rectification, stretch correlation, soft
ranking and function fitting algorithms from :

http://wuw.shef.ac.uk/“eee/esg/research/tina.html
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