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Abstract

Ridge curves are important features in human vision (see
Koenderink, 1990, p.295). In this paper we apply a simple
algebraic criterion of Porteous (1994) to the problem of
finding ridge curves in machine vision. This work provides
a simpler approach than other existing methods (see for
example, Thirion and Gourdon, 1992, and Hosaka, 1992).
To identify ridge curves in practice on surface data it is
necessary first to smooth the data, which we do using
thin-plate splines and related kriging procedures. After
validating our methodology, we illustrate its use on a set
of laser range data of the human head.

1 Introduction

Intuitively ridge curves on a surface occur at points where the curva-
ture is changing most rapidly. There is some evidence that the human
eye picks out ridge curves when looking at a surface. For example,
for the human face the ridge curves seem to correspond to prominent
anatomical features. It is claimed that ridge curves “usually appear,
along with edges of regression, in line drawings of scenes arising as
quick sketches or intended as caricatures”, Cutting et al (1993).

In this paper a simple algebraic criterion is used to define ridge
curves. This approach can be contrasted with apparently more com-
plicated existing approaches (see, for example, Thirion and Gourdon,
1992 and Hosaka, 1992). Some detailed comments are given in Section
2 below. Since our ridge criterion depends on third derivatives, it is
very sensitive to noise. Therefore, we investigate the use of smooth-
ing a discrete representation of a surface using smoothing thin-plate
splines and related kriging predictors.
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Koenderink (1990, p.290), points out that ridge curves are signifi-
cant features of a surface in computer vision. For a thorough mathe-
matical treatment of ridge curves, see Porteous (1994). Ridge curves
were plotted by Gordon (1991) as a step towards facial recognition
but bilinear interpolation was used among the local neighbours of a
pixel to find ridge points rather than the algebraic criterion described
below. A subset of ridge curves called the crest lines has been inves-
tigated by the research group at INRIA using the implicit function
theorem to calculate derivatives of a surface, after first carrying out
edge detection on CT and MRI images (see Ayache, 1995 and Guéziec,
1995). Kent, Mardia and Rabe (1994) analyse curvatures for 3-D laser
scans of the human face.

One of the reasons for looking at ridge curves is that they are
“robust” in the sense that as a surface deforms smoothly, so do the
ridge curves. In this sense ridge curves are unlike principal curves.

After preliminary validation of our methodology, we apply our
method to obtain ridge curves for laser range data of the human face.
In particular, it will be shown how ridge curves can be used to identify
key features.

2 Mathematical Formulation

A surface in three dimensional space can be represented, at least lo-
cally, by the equation
z = f(CB, y)'

Before defining ridge curves it is necessary to set up two preliminary
concepts, the tangent plane at a point on the surface and the principal
directions in this tangent plane. See e.g. Porteous (1994) for more
details.

The tangent plane at a point (z,y) is spanned by the two vectors

1 0
u=|0|,v=|1

fe Ju

Here f, = 0f/0z etc. Thus, a two dimensional vector p = (p1, p2)
defines a vector in the tangent space, p;u + pav.

Each direction p;u + psv in the tangent plane gives rise to a plane
curve called a normal curve. This is obtained by intersecting the sur-
face with the plane spanned by the normal (given by u x v) to the
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surface and the direction p;u 4+ pov. The curvature of the normal
curve at (z,y) depends on the direction of p. The directions for which
this curvature is extremal are called principal directions and the cor-
responding curvatures are called principal curvatures. The principal
directions and curvatures can be found as the (right) eigenvectors and
eigenvalues, k1 > ko, say, of the matrix A~ B, where

AZF&E ﬁﬁﬂ

is the matrix of the first fundamental form, and

o

1s the matrix of the second fundamental form. Points at which the

B=(l+f2+f2)F |

two eigenvalues are equal (k1 = k3) are known as umbilic points. At
such points the principal axes are no longer uniquely defined, which
causes dificulties. For the most part umbilic points are excluded from
the discussion below.

Principal curves on the surface are curves whose tangent directions
always point in a principal direction. There are two principal curves
passing through each non-umbilic point, corresponding to the larger
and smaller eigenvalues of A™!B, respectively. Thus there are two
families of principal curves on the surface.

Along a principal curve, the value of the corresponding principal
curvature changes and at certain points has local extrema. These
points are called ridge points and the set of all such points forms a
collection of curves called ridge curves. There are two sets of curves,
one for the larger and one for the smaller eigenvalue of A™' B. Further,
each ridge point can be classified according to whether the curvature
is maximal or minimal. Porteous (1994, p.187) gives an algebraic con-
dition for a point to be a ridge point, equivalent to the following for
a surface given by z = f(z,y). If p = (p1,p2) is a principal direction
with corresponding non-zero principal curvature , (so p is an eigen-
vector of A™! B with corresponding eigenvalue «,) at the point (z,y),
then (z,y) is a ridge point if and only if

R(a:, y) = (pzl)’fm:c + 3p%p2fmy + 3p1p§f:cyy + pg’fyyy)

—3(14 f2+ f;)%(p%fzzc + 2p1P2 fay + P53 foy ) (1S + P2y )kp = 0(. |
1
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This equation defines a set of curves in the (z,y) plane, which project
up to ridge curves on the surface.

Hosaka (1992, p.97, €q.7.28) derives an equation for the loci of
extrema of principal curvatures. We note here that this equation de-
termines the extrema of either principal curvature along a principal
curve rather than just the corresponding principal curvature. Thus
ridge curves form only part of the set of points detected by Hosaka’s
equation. The remaining curves, where the other principal curvature
has an extremum along a line of curvature, have been called sub-
parabolic curves (Porteous, 1990, p.224). In practice the extremum
curvature points are determined numerically while tracing each line of
curvature making a complicated procedure.

Researchers at INRIA have obtained crest lines. These are the
loci of points whose maximal (in absolute value) principal curvature
is a local extremum along a corresponding principal curve. They work
with implicitly defined surfaces and seek extrema of curvature directly,
with seemingly more complicated algebra than that given by Equa-
tion (1) (see e.g. Thirion and Gourdon, 1992, 1993). However, an
advantage of an implicit representation of a surface is that a global
representation of the surface can be obtained rather than just a local
representation.

3 Smoothing

Laser range data can be represented as a series of heights over a grid of
pixels. In order to use the above equations from differential geometry,
it is necessary to fit a surface to the pixel data, either interpolating or
smoothing it. Because of the sensitivity of third derivatives to small
scale variations in the data, smoothing of the data is essential before
calculating ridge curves.

The method of smoog we have employed is kriging. This is based on
the assumption that there is a stochastic process Z(z,y) which follows
a stationary (or intrinsic) random field model, with known covariance
function (or conditionally positive definite covariance function) o(h),
where h € R? denotes the lag, and a specified vector space of drift or
trend functions. Typically the drift space is given by polynomials in
h up to a specified order.
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We observe data
W, =Z(z;,y;)+e , &~ N(0,A),e=1,..,n,

where the €; are noise terms independent of one another. The objective
is to estimate Z(z,y) on the basis of the observations W;, : = 1,...n.
The predicted surface 2(3:,7;), say, 1s known as the kriging surface
and details of its computation can be found for example in Mardia et
al (1996). The derivatives of the kriging surface 2(:c,y) are used to
compute ridge curves.

The known parameter A > 0 represents the amount of smoothing.
If A = 0, the fitted surface is an interpolating surface matching the
data points exactly. On the other hand, as A — oo the fitted surface
tends to the least squares regression surface of the data. The use of
the parameter A is similar to a multi-resolution analysis in which we
try to pick out features in the data at different scales. In this case
we are looking for a single scale which seems to give the most reliable
indication of anatomically significant ridge curves. One set of choices
for o(h) (based on intrinsic processes) depending on a parameter o > 0
is given by

a(h) = (—1)[0‘]"'1”hH2°‘,oz > 0, a not an integer,

o(h) = (—1)“"’1”hH2°‘ log ||A]|, @ > 0, & an integer,

with the drift space consisting of polynomials in h of degree < [a]. A
motivation for this particular covariance structure is that the resulting
processes are self-similar: for noninteger «, dilating A by ¢ > 0 yields
a re-scaled covariance function, o(ch) = c**o(h); for integer «, an
analogous result holds. For o = 1 the kriging surface can be identified
with a thin-plate smoothing spline. Also, as « increases, the kriging
surface becomes smoother; for 2o > p the surface is p-times continu-
ously differentiable. These kriging surfaces can also be constructed in

terms of radial basis functions.

4 Implementation

We use a zero-tracing algorithm to plot ridge curves on a surface. The
surface is first triangulated, e.g. by placing a fine square grid over the
(z,y) plane and by dividing each square into two triangles. In the
applications a 100 x 100 grid was used.
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We track each curve as it crosses the edges of the triangles. The
process is complicated by the presence of umbilic points. Around such
points i1t is impossible to find a continuous, non-vanishing oriented
principal direction field (see Morris, 1996). Inspection of the ridge
criterion, Equation (1) shows that if p = (p1, p2) is replaced by —p =
(—p1, —p2), the criterion changes sign. Thus to find a zero of the
ridge criterion along a line segment we must check that the principal
directions at each end, p and ¢, say, are coherently oriented. If the
inner product < p,q > of p and ¢ is close to 41, then the two principal
directions have the same orientation and we can test for zeros by
seeking a sign change of R(z,y) along the line segment. If the inner
product of p and ¢ is close to —1, then there will be a zero if the sign of
R(z,y) is the same at either end of the line segment. Thus in practice
we conclude that a ridge curve passes through a line segment with end
points (z1,y1) and (z2,y2) and respective principal directions p and ¢
if

R(z1,y1)R(z2,y2) < p,q >< 0.

Linear interpolation of R(z,y) is used to determine where the zero of
R(z,y) lies.

We find umbilic points using a method of Morris (1996). Either one
or three ridges pass through an umbilic point, and at such points each
curve changes from being an extremum of one curvature to being an
extremum of the other curvature (Porteous, 1994, p.202). Thus either
one or three zeros of the ridge condition (for one of the curvatures)
around the edges of a triangle indicates the presence of an umbilic
point.

Some initial validation of the ridge tracing program has been given
using the following example without noise. For a surface of revolution
given by (g(u), h(u)cosv, h(u)sinv) every meridian (profile curve) is
a ridge curve. The only other ridge curves on the surface are those
(circular) parallels corresponding to vertices (turning points of curva-
ture) of the generating curve (g(u), h(v)). The program was adapted
to track only one set of ridge curves and successfully detected the
ridge curve on the surface of revolution generated by the plane curve
(u, u?+ut +3) which has an isolated vertex when v = 0. See Fig.1 and
Fig.2 for the result. The slight perturbations in the curve are due to
the use of linear interpolation to find the zeroes of the ridge criterion.
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5 Applications

In this section examples will be given using the intrinsic random field
with o(h) = —|h|® and quadratic drift, with different choices of A on
a laser scan of a human face to illustrate the effectiveness of our pro-
cedure. The kriging surface was fitted using 200 points approximately
equally spaced over the front of the face.

In Figs.3,4,5 and 6 the white and black curves correspond to the
minimal and maximal curvatures respectively. Notice that ridge curves
can change colour at umbilic points. For a description of the configu-
rations of ridge curves that can occur at umbilic points, see Porteous
(1994). Fig.3 gives the ridge curves for A = 0. This picture is too
cluttered and too affected by small-scale features on the surface for
much structure to be visible. Fig.4 shows a smoother version with
A = 0.01; the noise is much reduced. For A = 1,000 Fig.5 shows just
two main ridges of the face remaining, with all the detail smoothed
away.

Thus Fig.4 provides a good compromise. The main features de-
picted in Fig.4 remain stable over several orders of magnitude for A,
though the detailed structure can vary quite substantially. In Fig.4
the vertical white curve corresponds to the midline of the nose, and
the outer black curve picks out the outline of the nose. The “horizon-
tal” curve that changes colour twice goes across the top of the nostril
part of the nose. The black curve below the nose represents the upper
lip of the mouth. Other ridge curves follow features around the cheeks
and eyes. These features are clearly seen in Fig.6 which gives a per-
spective view of Fig.4 with its underlying nose surface being replaced
by that in Fig.3.

One pleasing aspect of Fig.4 is the level of symmetry of the ridge
curves between the left and right sides of the face. A requirement of
symmetry was not imposed on the algorithm or on the choice of land-
marks. Thus the symmetry of the output provides evidence that our
estimated ridge curves represent meaningful features on the surface.

For the nose laser scan, we have experimented with other choices of
o(h) such as exp(—c|h|?). The results are somewhat similar in essence
but the smoothing does not remove clutter as effectively.
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6 Discussion

We have given one practical example from laser range data as well
as some validation. The use of Porteous’s criterion for a ridge curve
is simple from a computational point of view. However, this work is
merely a first step in the use of ridge curves to statistically summarize
and compare surfaces. Further work is required to assess the replica-
bility of ridge curves, how much ”clutter” to remove and the amount
of smoothing needed to reliably compute third derivatives. Methods
such as cross-validation and scale space ideas (e.g. Lindeberg, 1994)
for the automatic selection of A need to be investigated. As well, a
thorough comparison with other methods of smoothing such as mov-
ing averages is needed. Future work includes plotting ridge curves for
the full face and the skull and using ridge curves for registration and
data summary.
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Fig.1: Top view of part of surface of Fig.2: Side view of part of surface of
revolution with ridge curve shown. revolution with ridge curve shown.
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Fig.3 The ridge curves for a face with  Fig.4: Th ridée curves for a face with
A=0. A =0.01.

Fig.5: The ridge curves for a face with Fig.6: The perspective view of the ridge
A = 100. curves of Fig.4 projected onto the
unsmoothed face of Fig.3.



