
Ridge Curves and Shape AnalysisJ.T. Kent, K.V. Mardia and J.M. WestDepartment of StatisticsUniversity of LeedsLeeds, LS2 9JTUnited KingdomAbstractRidge curves are important features in human vision (seeKoenderink, 1990, p.295). In this paper we apply a simplealgebraic criterion of Porteous (1994) to the problem of�nding ridge curves in machine vision. This work providesa simpler approach than other existing methods (see forexample, Thirion and Gourdon, 1992, and Hosaka, 1992).To identify ridge curves in practice on surface data it isnecessary �rst to smooth the data, which we do usingthin-plate splines and related kriging procedures. Aftervalidating our methodology, we illustrate its use on a setof laser range data of the human head.1 IntroductionIntuitively ridge curves on a surface occur at points where the curva-ture is changing most rapidly. There is some evidence that the humaneye picks out ridge curves when looking at a surface. For example,for the human face the ridge curves seem to correspond to prominentanatomical features. It is claimed that ridge curves \usually appear,along with edges of regression, in line drawings of scenes arising asquick sketches or intended as caricatures", Cutting et al (1993).In this paper a simple algebraic criterion is used to de�ne ridgecurves. This approach can be contrasted with apparently more com-plicated existing approaches (see, for example, Thirion and Gourdon,1992 and Hosaka, 1992). Some detailed comments are given in Section2 below. Since our ridge criterion depends on third derivatives, it isvery sensitive to noise. Therefore, we investigate the use of smooth-ing a discrete representation of a surface using smoothing thin-platesplines and related kriging predictors.
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British Machine Vision ConferenceKoenderink (1990, p.290), points out that ridge curves are signi�-cant features of a surface in computer vision. For a thorough mathe-matical treatment of ridge curves, see Porteous (1994). Ridge curveswere plotted by Gordon (1991) as a step towards facial recognitionbut bilinear interpolation was used among the local neighbours of apixel to �nd ridge points rather than the algebraic criterion describedbelow. A subset of ridge curves called the crest lines has been inves-tigated by the research group at INRIA using the implicit functiontheorem to calculate derivatives of a surface, after �rst carrying outedge detection on CT and MRI images (see Ayache, 1995 and Gu�eziec,1995). Kent, Mardia and Rabe (1994) analyse curvatures for 3-D laserscans of the human face.One of the reasons for looking at ridge curves is that they are\robust" in the sense that as a surface deforms smoothly, so do theridge curves. In this sense ridge curves are unlike principal curves.After preliminary validation of our methodology, we apply ourmethod to obtain ridge curves for laser range data of the human face.In particular, it will be shown how ridge curves can be used to identifykey features.2 Mathematical FormulationA surface in three dimensional space can be represented, at least lo-cally, by the equation z = f(x; y):Before de�ning ridge curves it is necessary to set up two preliminaryconcepts, the tangent plane at a point on the surface and the principaldirections in this tangent plane. See e.g. Porteous (1994) for moredetails.The tangent plane at a point (x; y) is spanned by the two vectorsu = 264 10fx 375 ;v = 264 01fy 375 :Here fx = @f=@x etc. Thus, a two dimensional vector p = (p1; p2)de�nes a vector in the tangent space, p1u+ p2v.Each direction p1u+ p2v in the tangent plane gives rise to a planecurve called a normal curve. This is obtained by intersecting the sur-face with the plane spanned by the normal (given by u � v) to the



British Machine Vision Conferencesurface and the direction p1u + p2v. The curvature of the normalcurve at (x; y) depends on the direction of p. The directions for whichthis curvature is extremal are called principal directions and the cor-responding curvatures are called principal curvatures. The principaldirections and curvatures can be found as the (right) eigenvectors andeigenvalues, �1 � �2, say, of the matrix A�1B, whereA = � 1 + f2x fxfyfxfy 1 + f2y �is the matrix of the �rst fundamental form, andB = (1 + f2x + f2y )� 12 � fxx fxyfxy fyy �is the matrix of the second fundamental form. Points at which thetwo eigenvalues are equal (�1 = �2) are known as umbilic points. Atsuch points the principal axes are no longer uniquely de�ned, whichcauses di�culties. For the most part umbilic points are excluded fromthe discussion below.Principal curves on the surface are curves whose tangent directionsalways point in a principal direction. There are two principal curvespassing through each non-umbilic point, corresponding to the largerand smaller eigenvalues of A�1B, respectively. Thus there are twofamilies of principal curves on the surface.Along a principal curve, the value of the corresponding principalcurvature changes and at certain points has local extrema. Thesepoints are called ridge points and the set of all such points forms acollection of curves called ridge curves. There are two sets of curves,one for the larger and one for the smaller eigenvalue of A�1B. Further,each ridge point can be classi�ed according to whether the curvatureis maximal or minimal. Porteous (1994, p.187) gives an algebraic con-dition for a point to be a ridge point, equivalent to the following fora surface given by z = f(x; y). If p = (p1; p2) is a principal directionwith corresponding non-zero principal curvature �p (so p is an eigen-vector of A�1B with corresponding eigenvalue �p) at the point (x; y),then (x; y) is a ridge point if and only ifR(x; y) = (p31fxxx + 3p21p2fxxy + 3p1p22fxyy + p32fyyy)�3(1 + f2x + f2y ) 12 (p21fxx + 2p1p2fxy + p22fyy)(p1fx + p2fy)�p = 0:(1)



British Machine Vision ConferenceThis equation de�nes a set of curves in the (x; y) plane, which projectup to ridge curves on the surface.Hosaka (1992, p.97, eq.7.28) derives an equation for the loci ofextrema of principal curvatures. We note here that this equation de-termines the extrema of either principal curvature along a principalcurve rather than just the corresponding principal curvature. Thusridge curves form only part of the set of points detected by Hosaka'sequation. The remaining curves, where the other principal curvaturehas an extremum along a line of curvature, have been called sub-parabolic curves (Porteous, 1990, p.224). In practice the extremumcurvature points are determined numerically while tracing each line ofcurvature making a complicated procedure.Researchers at INRIA have obtained crest lines. These are theloci of points whose maximal (in absolute value) principal curvatureis a local extremum along a corresponding principal curve. They workwith implicitly de�ned surfaces and seek extrema of curvature directly,with seemingly more complicated algebra than that given by Equa-tion (1) (see e.g. Thirion and Gourdon, 1992, 1993). However, anadvantage of an implicit representation of a surface is that a globalrepresentation of the surface can be obtained rather than just a localrepresentation.3 SmoothingLaser range data can be represented as a series of heights over a grid ofpixels. In order to use the above equations from di�erential geometry,it is necessary to �t a surface to the pixel data, either interpolating orsmoothing it. Because of the sensitivity of third derivatives to smallscale variations in the data, smoothing of the data is essential beforecalculating ridge curves.The method of smoog we have employed is kriging. This is based onthe assumption that there is a stochastic process Z(x; y) which followsa stationary (or intrinsic) random �eld model, with known covariancefunction (or conditionally positive de�nite covariance function) �(h),where h 2 R2 denotes the lag, and a speci�ed vector space of drift ortrend functions. Typically the drift space is given by polynomials inh up to a speci�ed order.



British Machine Vision ConferenceWe observe dataWi = Z(xi; yi) + �i ; �i � N(0; �); i = 1; :::; n;where the �i are noise terms independent of one another. The objectiveis to estimate Z(x; y) on the basis of the observations Wi; i = 1; :::n:The predicted surface Ẑ(x; y), say, is known as the kriging surfaceand details of its computation can be found for example in Mardia etal (1996). The derivatives of the kriging surface Ẑ(x; y) are used tocompute ridge curves.The known parameter � � 0 represents the amount of smoothing.If � = 0, the �tted surface is an interpolating surface matching thedata points exactly. On the other hand, as � !1 the �tted surfacetends to the least squares regression surface of the data. The use ofthe parameter � is similar to a multi-resolution analysis in which wetry to pick out features in the data at di�erent scales. In this casewe are looking for a single scale which seems to give the most reliableindication of anatomically signi�cant ridge curves. One set of choicesfor �(h) (based on intrinsic processes) depending on a parameter � > 0is given by �(h) = (�1)[�]+1khk2�; � > 0; � not an integer;�(h) = (�1)�+1khk2� log khk; � > 0; � an integer;with the drift space consisting of polynomials in h of degree � [�]. Amotivation for this particular covariance structure is that the resultingprocesses are self-similar: for noninteger �, dilating h by c > 0 yieldsa re-scaled covariance function, �(ch) = c2��(h); for integer �, ananalogous result holds. For � = 1 the kriging surface can be identi�edwith a thin-plate smoothing spline. Also, as � increases, the krigingsurface becomes smoother; for 2� > p the surface is p-times continu-ously di�erentiable. These kriging surfaces can also be constructed interms of radial basis functions.4 ImplementationWe use a zero-tracing algorithm to plot ridge curves on a surface. Thesurface is �rst triangulated, e.g. by placing a �ne square grid over the(x; y) plane and by dividing each square into two triangles. In theapplications a 100 � 100 grid was used.



British Machine Vision ConferenceWe track each curve as it crosses the edges of the triangles. Theprocess is complicated by the presence of umbilic points. Around suchpoints it is impossible to �nd a continuous, non-vanishing orientedprincipal direction �eld (see Morris, 1996). Inspection of the ridgecriterion, Equation (1) shows that if p = (p1; p2) is replaced by �p =(�p1;�p2), the criterion changes sign. Thus to �nd a zero of theridge criterion along a line segment we must check that the principaldirections at each end, p and q, say, are coherently oriented. If theinner product < p; q > of p and q is close to +1, then the two principaldirections have the same orientation and we can test for zeros byseeking a sign change of R(x; y) along the line segment. If the innerproduct of p and q is close to �1, then there will be a zero if the sign ofR(x; y) is the same at either end of the line segment. Thus in practicewe conclude that a ridge curve passes through a line segment with endpoints (x1; y1) and (x2; y2) and respective principal directions p and qif R(x1; y1)R(x2; y2) < p; q >< 0:Linear interpolation of R(x; y) is used to determine where the zero ofR(x; y) lies.We �nd umbilic points using a method of Morris (1996). Either oneor three ridges pass through an umbilic point, and at such points eachcurve changes from being an extremum of one curvature to being anextremum of the other curvature (Porteous, 1994, p.202). Thus eitherone or three zeros of the ridge condition (for one of the curvatures)around the edges of a triangle indicates the presence of an umbilicpoint.Some initial validation of the ridge tracing program has been givenusing the following example without noise. For a surface of revolutiongiven by (g(u); h(u) cos v; h(u) sin v) every meridian (pro�le curve) isa ridge curve. The only other ridge curves on the surface are those(circular) parallels corresponding to vertices (turning points of curva-ture) of the generating curve (g(u); h(u)). The program was adaptedto track only one set of ridge curves and successfully detected theridge curve on the surface of revolution generated by the plane curve(u; u2+u4+3) which has an isolated vertex when u = 0. See Fig.1 andFig.2 for the result. The slight perturbations in the curve are due tothe use of linear interpolation to �nd the zeroes of the ridge criterion.



British Machine Vision Conference5 ApplicationsIn this section examples will be given using the intrinsic random �eldwith �(h) = �jhj5 and quadratic drift, with di�erent choices of � ona laser scan of a human face to illustrate the e�ectiveness of our pro-cedure. The kriging surface was �tted using 200 points approximatelyequally spaced over the front of the face.In Figs.3,4,5 and 6 the white and black curves correspond to theminimal and maximal curvatures respectively. Notice that ridge curvescan change colour at umbilic points. For a description of the con�gu-rations of ridge curves that can occur at umbilic points, see Porteous(1994). Fig.3 gives the ridge curves for � = 0. This picture is toocluttered and too a�ected by small-scale features on the surface formuch structure to be visible. Fig.4 shows a smoother version with� = 0:01; the noise is much reduced. For � = 1; 000 Fig.5 shows justtwo main ridges of the face remaining, with all the detail smoothedaway.Thus Fig.4 provides a good compromise. The main features de-picted in Fig.4 remain stable over several orders of magnitude for �,though the detailed structure can vary quite substantially. In Fig.4the vertical white curve corresponds to the midline of the nose, andthe outer black curve picks out the outline of the nose. The \horizon-tal" curve that changes colour twice goes across the top of the nostrilpart of the nose. The black curve below the nose represents the upperlip of the mouth. Other ridge curves follow features around the cheeksand eyes. These features are clearly seen in Fig.6 which gives a per-spective view of Fig.4 with its underlying nose surface being replacedby that in Fig.3.One pleasing aspect of Fig.4 is the level of symmetry of the ridgecurves between the left and right sides of the face. A requirement ofsymmetry was not imposed on the algorithm or on the choice of land-marks. Thus the symmetry of the output provides evidence that ourestimated ridge curves represent meaningful features on the surface.For the nose laser scan, we have experimented with other choices of�(h) such as exp(�cjhj2). The results are somewhat similar in essencebut the smoothing does not remove clutter as e�ectively.



British Machine Vision Conference6 DiscussionWe have given one practical example from laser range data as wellas some validation. The use of Porteous's criterion for a ridge curveis simple from a computational point of view. However, this work ismerely a �rst step in the use of ridge curves to statistically summarizeand compare surfaces. Further work is required to assess the replica-bility of ridge curves, how much "clutter" to remove and the amountof smoothing needed to reliably compute third derivatives. Methodssuch as cross-validation and scale space ideas (e.g. Lindeberg, 1994)for the automatic selection of � need to be investigated. As well, athorough comparison with other methods of smoothing such as mov-ing averages is needed. Future work includes plotting ridge curves forthe full face and the skull and using ridge curves for registration anddata summary.AcknowledgementsThe authors are grateful to Anne Coombes, Delman Lee, Alf Linney,RichardMorris and Sophia Rabe for helpful discussions and assistance.Three referees provided useful comments. This work is supported byan EPSRC grant under the Complex Stochastic Systems Initiative.References[1] Ayache,N. Medical computer vision, virtual reality and robotics-promising research tracks. Proceedings BMVC, 1995, pp.1-25.[2] Cutting,C.B., Bookstein,F.L., Haddad,B., Dean,D., Kim,D. Aspline-based approach for averaging three-dimensional curves andsurfaces. Mathematical Methods in Medical Imaging II. Eds. Wil-son,J.N., Wilson,D.N., SPIE Proceedings, 2035, 1993, pp.29-44.[3] Gordon,G.G. Face Recognition from Depth and Curvature. PhDthesis, Harvard University, 1991.[4] Gu�eziec,A. Surface representation with Deformable Splines: Us-ing Decoupled Variables. IEEE Computational Science and En-gineering, 2, 1995, pp.69-80.
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Fig.1: Top view of part of surface of Fig.2: Side view of part of surface ofrevolution with ridge curve shown. revolution with ridge curve shown.

Fig.3: The ridge curves for a face with Fig.4: The ridge curves for a face with� = 0. � = 0:01.
Fig.5: The ridge curves for a face with Fig.6: The perspective view of the ridge� = 100. curves of Fig.4 projected onto theunsmoothed face of Fig.3.


