
Face Recognition using Radial BasisFunction Neural NetworksA. Jonathan Howell and Hilary BuxtonSchool of Cognitive and Computing Sciences,University of Sussex, Falmer, Brighton BN1 9QH, UKfjonh,hilarybg@cogs.susx.ac.ukAbstractThis paper presents experiments using an adaptive learning compo-nent based on Radial Basis Function (RBF) networks to tackle theunconstrained face recognition problem using low resolution video in-formation. Firstly, we performed preprocessing of face images to mimicthe e�ects of receptive �eld functions found at various stages of the hu-man vision system. These were then used as input representations toRBF networks that learnt to classify and generalise over di�erent viewsfor a standard face recognition task. Two main types of preprocessing(Di�erence of Gaussian �ltering and Gabor wavelet analysis) are com-pared. Secondly we provide an alternative, `face unit' RBF networkmodel that is suitable for large-scale implementations by decomposi-tion of the network, which avoids the unmanagability of neural net-works above a certain size. Finally, we show the 2-D shift, scale andy-axis rotation invariance properties of the standard RBF network.Quantitative and qualitative di�erences in these schemes are describedand conclusions drawn about the best approach for real applicationsto address the face recognition problem using low resolution images.1 IntroductionThe human face poses several severe tests for any visual system: the high degree ofsimilaritybetween di�erent faces, the extent to which expressions and hair can alterthe face, and the large number of angles fromwhich a face can be viewed in commonsituations. A face recognition systemmust be robust with respect to this variabilityand generalise over a wide range of conditions to capture the essential similaritiesfor a given human face. It is only recently that work on biologically-motivated,statistical approaches to face recognition has begun to deliver real solutions. Oneof the main problems that these approaches tackle is dimensionality reduction toremove much of the redundant information in the original images. There are manypossibilities for such representations of the data, including principal componentanalysis, Gabor �lters and various isodensity map or feature extraction schemes.A well known example is the work of Turk & Pentland [1], on the `eigenface'approach, which is widely acknowledged to be useful for practical application.However, the need for representations at a range of scales and orientations causes
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extra complexity and updating the average eigenface (used for localisation) whennew faces are added to the dataset are problems for this scheme. These di�cultieshave been overcome to some extent in later work by various researchers [2, 3, 4].In particular, it seems that appropriate preprocessing of input representations fora face recognition scheme can overcome the problems of lighting variation andmultiple scales. Other sources of variation such as face orientation, expression,occlusion etc. still remain.In our work we use an adaptive learning component based on RBF networks totackle the unconstrained face recognition problem. We want our face recognitionscheme to generalise over a wide range of conditions to capture the essential sim-ilarities of a given face. The RBF network has been identi�ed as valuable modelby a wide range of researchers [5, 6, 7, 8, 9, 10]. Its main characteristics are �rst,its computational simplicity (only one layer involved in supervised training whichgives fast convergence), and second, its description by a well-developed mathemat-ical theory (resulting in statistical robustness). RBFs are seen as ideal for practicalvision applications by [7] as they are good at handling sparse, high-dimensionaldata (common in images), and because they use approximation which is betterthan interpolation for handling noisy, real-life data. RBF networks are claimedto be more accurate than those based on Back-Propagation (BP), and they pro-vide a guaranteed, globally optimal solution via simple, linear optimisation. AnRBF interpolating classi�er [11], was e�ective and gave performance error of only5{9% on generalisation under changes of orientation, scale and lighting. This com-pares favourably with other state of the art systems such as the Turk & Pentlandscheme. In contrast to more deterministic methods using warping based on reg-istration of features, eg [12], our approach uses simpler preprocessing, but learnsto discriminate using the RBF networks to overcome occlusion arising out of headrotation.Cognitive studies of the way human faces are perceived (for example [13]) cancontribute to the design of systems that automate this kind of visual processing.There is support for having `face recognition units' (FRUs) for recognising familiarfaces [14, 13, 15]. This idea is partly captured by the standard RBF techniquesdescribed next where the �rst layer of the network maps the inputs with a hiddenunit devoted to each view of the face to be classi�ed. The second layer is thentrained to combine the views so that a single output unit corresponds to theindividual person. We have taken this idea further and have developed a `face unit'network model, which allows rapid network training and classi�cation of examplesof views of the person to be recognised. These face units give high performanceand also alleviate the problem of adding new data to an existing trained network.We are use the various views of the person to be recognised together with selectedconfusable views of other people as the negative evidence for the network. Our faceunits have just 2 outputs corresponding to `yes' or `no' decisions for the individual.This is in contrast with Edelman [11] who did not use such negative evidence intheir study. We show that this system organisation allows 
exible scaling up whichcould be exploited in real-life applications.



2 The RBF Network ModelThe RBF network is a two-layer, hybrid learning network [5, 16], with a supervisedlayer from the hidden to the output units, and an unsupervised layer, from theinput to the hidden units, where individual radial Gaussian functions for eachhidden unit simulate the e�ect of overlapping and locally tuned receptive �elds.They use the vector norm distance, ji� cj, equivalent toPNx=1(ix � cx)2, betweenthe N -dimensional input vector i and hidden unit centre c (N being the numberof input units). The output value can be seen to approach a maximum when ibecomes most similar to c. The input vectors are unit-normalised.Each hidden unit has an associated � (sigma) `width' value which de�nes thenature and scope of the unit's receptive �eld response1. This gives an activationthat is related to the relative proximity of the test data to the training data,allowing a direct measure of con�dence in the output of the network for a particularpattern. In addition, if the pattern is more than slightly di�erent to those trained,very low (or no) output will occur.The output o for hidden unit h (for a pattern l) can be expressed as:oh(l) = exp[�ji(l)� chj22�2h ]; (1)the hidden layer output being unit-normalised, as suggested by [17]. For outputunit i, the output is: oi(l) =Xh wihoh(l): (2)Whilst the weights wih can be adjusted using the Widrow-Ho� [18] delta learn-ing rule, the single layer of linear output units permits a matrix pseudo-inversemethod [19] for their exact calculation. The latter approach allows almost instan-taneous `training' of the network, regardless of size2. The RBF network's successin approximating non-linear multidimensional functions is dependent on su�cienthidden units being used and the suitability of the centres' distribution over theinput vector space [20].2.1 `Face Unit' RBF ModelFor the following tests, two types of network were used: a `standard' RBF modeland a `face unit' RBF model. The standard network is trained with all possibleclasses from the data with a `winner-takes-all' output strategy, whilst the `faceunit' network produces a positive signal only for the particular person it is trainedto recognise. For each individual, a `face unit' RBF network can be trained todiscriminate between that person and others selected from the data set, using`pro' and `anti' evidence for and against the individual. Details can be foundin [21]. Although this second approach increases complexity, the splitting of the1It is equivalent to the standard deviation of the width of the Gaussian response, so largervalues allow more points to be included.2A network of 250 hidden units and 10 outputs, ie.2500 parameters, which required severalhours of Sparc 20 processing time for gradient descent can be computed in a small fraction of asecond.



Figure 1: Entire 10-image range (rotating around the y-axis) for one person beforepreprocessingtraining for individual classes into separate networks gives a modular structure thatcan potentially support large numbers of classes, since network size and trainingtimes for the `standard' model quickly become impractical as the number of classesincreases.3 Form of Test DataLighting and location for the training and test face images in these initial studieshas been kept fairly constant to simplify the problem. For each individual to beclassi�ed, ten images of the head and shoulders were taken in ten di�erent positionsin 10� steps from face-on to pro�le of the left side (see Figure 1), 90� in all. Thisgave a data set of 100 8-bit grey-scale 384�287 images from ten individuals.A 100�100-pixel `window' was located manually in each image centred on thetip of the person's nose, so that visible features on pro�les, for instance, should bein roughly similar locations to face-on. This `window' region was sub-sampled toa variety of resolutions for testing. Full details are given in [22]. The resolutionof the images is represented as `n�n', a resolution of 25�25 being used for thework reported here. The ratio of training and test images used is represented as`train/test', eg `20/80', where 100 images were in the data set and 20 were usedfor training and 80 for test. The `face unit' network size is denoted by `p + a',where p is the number of `pro' hidden units, and a is the number of `anti' hiddenunits. Tests were made on a range of network sizes from 1+1 to 6+12 (which aree�ectively 2/98 and 18/82 networks).3.1 Pre-processing MethodsAlthough the RBF network was able to learn the dataset without preprocessing,ie.on pure grey-level values [23], the authors see preprocessing of the images as avalid and important intermediate step, highlighting relevant parts of the informa-tion, and adding an essential invariance to illumination [24].Two main techniques are used for the preprocessing of the images: Di�erence ofGaussian (DoG) �ltering and Gabor wavelet analysis at a range of scales. One wayof thinking about these input representations and mapping them onto our RBF



networks is to use the analogy with visual neurons. The receptive �eld of sucha neuron is the area of the visual �eld (image) where the stimulus can in
uenceits response. For the di�erent classes of these neurons, a receptive �eld functionf(x; y) can be de�ned. For example, retinal ganglion cells and lateral geniculatecells early in the visual processing have receptive �elds which can be implementedas Di�erence of Gaussian �lters [24]. Later, the receptive �elds of the simple cells inthe primary visual cortex are oriented and have characteristic spatial frequencies.Daugman [25] proposed that these could be modelled as complex 2-D Gabor �lters.Petkov et al [3] successfully implemented a face recognition scheme based on Gaborwavelet input representations to imitate the human vision system. Our earlierstudies (see [23]) showed that these later stages of processing make informationmore explicit for our face recognition task than the earlier DoG �lters.The experiments presented here concentrate on two speci�c applications ofthese techniques:� DoG convolution with a scale factor of 0.4, with a reduced range of grey-levels. The sampled values were thresholded to give zero-crossings infor-mation. A 25�25 image gave 21�21 convolved values, ie.441 samples perimage.� Gabor `A3' sampling (for details, see [23]), with a full range of grey-levels.Data was sampled at four non-overlapping scales from 8�8 to 1�1 and threeorientations (0�, 120�, 240�) with sine and cosine components. A 25�25image gave 510 coe�cients per image.4 Generalization Over Views (y-axis Rotation)by the RBF NetworkFixed selections of images used for training to keep the experiments as constrainedas possible. Table 1 shows both the standard and face unit RBF network modelsable to generalise very well over the di�erent views with either the DoG or Gaborpreprocessing method.(a) Pre-processing Initial % % Discarded % After DiscardDoG 88 28 100Gabor 94 30 100(b) Pre-processing Initial % % Discarded % After DiscardDoG 92 35 95Gabor 95 25 100Table 1: E�ect of pre-processing methods on original dataset: (a) Standard 50/50RBF Network (b) 6+12 Face Unit RBF Network



(a) (b) (c) (d) (e)Figure 2: Shift-varying data for the `face on' view of one individual: (a) top left(b) top right (c) normal view (d) bottom left (e) bottom right(a) (b) (c) (d) (e)Figure 3: Scale-varying data for the `face on' view of one individual: (a) +25%(uses 111�111 window) (b) +12.5% (107�107) (c) normal view (100�100) (d){12.5% (94�94) (e) {25% (87�87)5 Shift and Scale Invariance Properties of theRBF NetworkTwo further data sets were created to test the RBF network's generalisation abil-ities:� A shift-varying data set with �ve copies of each image: one at the standardsampling `window' position, and four others at the corners of a box where allx,y positions were �10 pixels from the centre (see Figure 2).� A scale-varying data set with �ve copies of each image: one at the standardsampling `window' size, and four re-scaled at �12:5% and �25% of its surfacearea, ranging from 87�87 to 111�111 (see Figure 3).5.1 Inherent Invariance - Training with Original ImagesOnlyThese experiments used only the original from each group of �ve for training, usingall the varied ones (and the remainder of the original ones not used for training)for testing. This gives a measure of the intrinsic invariance of the network to shiftand scale, ie.the invariance not developed during training by exposure to examplesof how the data varies.



(a) Pre-processing Initial % % Discarded % After DiscardDoG 14 84 21Gabor 35 82 47(b) Pre-processing Initial % % Discarded % After DiscardDoG 51 30 51Gabor 57 38 52Table 2: E�ect of pre-processing methods on shift-varying dataset (the originalfrom each group of �ve used for training) (a) Standard 100/400RBF Network (b)10+20 Face Unit RBF Network(a) Pre-processing Initial % % Discarded % After DiscardDoG 58 63 78Gabor 77 46 95(b) Pre-processing Initial % % Discarded % After DiscardDoG 69 40 69Gabor 83 36 88Table 3: E�ect of pre-processing methods on scale-varying dataset (the originalfrom each group of �ve used for training) (a) Standard 100/400 RBF Network (b)10+20 Face Unit RBF Network5.2 Learnt Invariance - Training with Shift and ScaleVarying ImagesThese experiments again used a �xed selection of positions for training examples,using all �ve versions of each original image. This gives the network informationabout the shift and scale variance during training to help in learning this kind ofinvariance.(a) Pre-processing Initial % % Discarded % After DiscardDoG 72 46 94Gabor 85 35 98(b) Pre-processing Initial % % Discarded % After DiscardDoG 84 32 93Gabor 90 24 97Table 4: E�ect of pre-processing methods on shift-varying dataset (full groupsof �ve used for training) (a) Standard 250/250 RBF Network (b) 30+60 Face UnitRBF Network



(a) Pre-processing Initial % % Discarded % After DiscardDoG 83 34 98Gabor 90 26 97(b) Pre-processing Initial % % Discarded % After DiscardDoG 91 24 97Gabor 93 20 98Table 5: E�ect of pre-processing methods on scale-varying dataset (full groupsof �ve used for training) (a) Standard 250/250 RBF Network (b) 30+60 Face UnitRBF Network6 ObservationsSeveral points can seen from the results:� The RBF network is shown to be able to generalise well in a non-trivial taskclassifying y-axis rotated faces (3-D complex shapes).� Gabor preprocessing is shown to give a more generally useful input repre-sentation than the DoG preprocessing.� Not suprisingly, the multi-scale Gabor preprocessing is shown to give greaterscale invariance than the DoG preprocessing.� The Gabor preprocessing is also shown not to fail catastrophically on thetougher shift invariance tests, unlike the DoG preprocessing.� The RBF network is shown to have an inherent scale invariance on thesetasks that does not need to be explicitly learnt from examples.� In contrast, RBF networks do not have an inherent shift invariance, but thiscan be learnt from appropriate training data.� The `face unit' RBF network is shown to be superior to the standard networkin terms of lower discard proportions for a particular level of generalisationperformance.Although only ten individuals are being classi�ed here, this type of networkhas been shown to work well with greater numbers of classes. For instance, theOlivetti Research Laboratory database of faces3 with 400 images of 40 people canbe distinguished with a high level of performance - with Gabor preprocessing, 95%can be correctly recognised after discard (see [26]).7 Conclusion/Future WorkIn summary, the locally-tuned linear Radial Basis Function (RBF) networks showedthemselves to perform well in the face recognition task. This is a promising resultfor the RBF techniques considering the high degree of variability introduced bythe varying views (y-axis rotation) of a person's face in these data sets. By cen-tering our sampled faces on the nose of the pro�le views, we can regard the partialocclusion as simply missing features from the other side of the face. This is in3available via ftp, for further information: http://www.cam-orl.co.uk/facedatabase.html



accord with known results from Ahmad & Tresp [9] who trained a variety of netsto recognise stationary hand gestures from computer-generated 2-D views (polarcoordinates) of �ngertips. They obtained good generalisation for 3-D orientationand showed that RBF nets were able to cope well even when much of the datawas missing. Although their standard test data was handled well by a BP net, itperformed badly with missing features and su�ered a serious falling o� in perfor-mance as more elements were lost. They showed, however, that a Gaussian RBFnet (of the kind we used in our studies) could cope well, having a success rate ofover 90% even with 50% of the features missing. This behaviour is very useful forcoping with occlusion and other factors which lead to incomplete visual data.We are now testing to see if the degree of view, scale and shift invariance thatcan be learnt by the RBF nets is su�cient to cope with data isolated from real-time video by a general purpose motion tracker. We are also studying invarianceto facial expression and re�ning an automated `face-�nder' routine. This is nec-essary for the next stage of development in which people are to be identi�ed innatural image sequences with the usual variations in illumination as well as posi-tion, scale, view and facial expression. The statistical nature of the informationsuccessfully captured by RBF nets to do the classi�cation task may also be e�ec-tive for the face localisation task. It is clear from the work of Turk & Pentland [1]and Bishop [10] and others using statistically based techniques that this is the keyto good performance and the RBF techniques are mathematically well-founded,which gives a clear advantage in engineering a solution to our application prob-lems. Current work [26] is tackling a much more unconstrained recognition taskusing faces tracked in real-time and gathering enough information to classify themaccurately with good generalisation to other image sequences containing familiarpeople.References[1] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of CognitiveNeuroscience, 3(1):71{86, 1991.[2] A. Pentland, B. Moghaddam, and T. Starner. View-based and modulareigenspaces for face recognition. In IEEE Conf. Computer Vision and PatternRecognition, pages 84{91, 1994.[3] N. Petkov, P. Kruizinga, and T. Lourens. Biologically motivated approachto face recognition. In Proc. IWANN, pp 68{77, 1993.[4] R. P. N. Rao and D. H. Ballard. Natural basis functions and topographicmemory for face recognition. In Proc. IJCAI, pp 10{17, Montr�eal, 1995.[5] J. Moody and C. Darken. Learning with localized receptive �elds. InD. Touretzky, G. Hinton, and T. Sejnowski, editors, Proc. 1988 ConnectionistModels Summer School, pages 133{143. Morgan Kaufmann, 1988.[6] T. Poggio and F. Girosi. Regularization algorithms for learning that areequivalent to multilayer networks. Science, 247:978{982, 1990.[7] F. Girosi. Some extensions of radial basis functions and their applications inarti�cal intelligence. Computers Math. Applic., 24(12):61{80, 1992.
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