
Identifying planar regions in a sceneusing uncalibrated stereo vision.Gabriel Hamid, Nick Hollinghurst and Roberto CipollaDepartment of Engineering, University of Cambridge,Cambridge, CB2 1PZ.fgh,njh,cipollag@eng.cam.ac.ukAbstractWe describe the use of well-known uncalibrated stereo algorithms fordetecting planar regions in a scene from the transformation of featurelocations between views. Simulations indicate that a typical set-upwould have a resolution of the order of one centimetre. A fully oper-ational system is not yet complete, but here we present a number ofsteps towards achieving this goal.Keywords: uncalibrated stereo vision, segmentation, planar.1 IntroductionWe are developing a system which combines stereoscopic vision with a roboticmanipulator to enable it to locate, reach and grasp unmodelled objects in anunstructured environment. Part of the system has been built. The algorithm forindicating the object of interest is described in [2] and the algorithm for visuallyguiding the robot arm to the object is described in [6]. Both these algorithms useuncalibrated stereo vision. The advantages of using uncalibrated stereo are thatit is easier to set up, more robust to disturbances of the cameras and insensitiveto uncertainties in the camera parameters.In order to complete the system an uncalibrated stereo algorithm is requiredfor grasp planning. Many robotic grippers consist of two parallel jaws, such amechanism is well suited to grasping objects with parallel planar facets. Hence,a simple paradigm for grasp planning is to search for planar facets. There arewell-known uncalibrated stereo algorithms for detecting planar regions in a scene[4, 11]. Here we describe for the �rst time the implementation of these algorithmsto this application. A fully operational system is not yet complete, but here wepresent a number of steps taken towards achieving this goal.2 Theoretical frameworkThe principle underlying all uncalibrated stereo algorithms for segmenting a sceneinto planar regions is the same and is summarised here.Two views of a planar surface are related by a two-dimensional projectivetransformation. Features are grouped according to coplanarity by searching for
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British Machine Vision Conferencefeatures which follow the same transformation between the two images. The searchspace is large because it is also necessary to search for the correspondence betweenthe images. The search is performed by a strategy of hypothesis, prediction andtesting, see �gure 1. A hypothesis consists of a basis set of matching featuresthought to be coplanar. This de�nes a projective transformation between the twostereo views. A prediction consists of the mapping of a feature from one imageto the other according to this transformation. If the transformation correctlypredicts how other features transfer between the images then the hypothesis isaccepted and the features are grouped as a plane. Whereas if no consensus can befound with any other features then the hypothesis is discarded, and another onemust be tried. The correctness of a prediction is determined by a statistical test,such as the chi-squared test on the Mahalanobis distance between the features.The uncertainty in the positions of both the transferred feature and its predictedmatch are computed by the propagation of errors through all the computationsstarting from the initial imagemeasurements. If the Mahalanobis distance betweena transferred feature and its predicted match is below a speci�ed con�dence levelthen the match is deemed correct, otherwise not.Computation of uncertainty by the propagation of errorsMethod The approach is adapted from [3]. Let x be a vector in Rn of somemeasurement data with associated covariance matrix �x, and let y be a vectorin Rm computed from those measurements. If y = f (x) then to a �rst orderapproximation the uncertainty on y is:�y = Df(x)�xDf(x)T (1)where Df(x) is the derivative of f evaluated at x, an m� n Jacobian matrix.An example: Computation of the uncertainty on the projective trans-formation between two views of a planar surface.Let (Ai; Bi; Ci) and (ai; bi; ci) be the homogeneous coordinates of a basis setof four corresponding pairs of lines, i = 1 to 4. The projective transformationbetween the two views can be written as:k0@ aibici 1A = 0@ t0 t1 t2t3 t4 t5t6 t7 1 1A0@ AiBiCi 1A where k 6= 0The eight parameters of the projective transformation are computed directly fromthe four pairs of corresponding lines [8]. The Jacobian of the function mappingthe line data to the transformation parameters is an 8�24 matrix of the form:Df = 0B@ @t0@A1 � � � @t0@c4... . . .@t7@A1 1CA (2)The individual elements of the Jacobian matrix are estimated numerically by �nitedi�erences. The measurement data consists of the four pairs of corresponding



British Machine Vision Conferencelines, because the lines are all independent, the 24�24 covariance matrix of themeasurement data is of the form:�x = 0BBB@ �0 0 � � �0 �1... . . . �7 1CCCA (3)where �0; : : : ;�7 are the 3�3 covariance matrices of the eight lines, and 0 is the3�3 null matrix. The uncertainty in the positions of each line is computed from theresiduals of the line �t to the edge data. Finally, the uncertainty of the projectivetransformation is computed by inserting equations (2) and (3) into (1).3 Experimental resultsTypical values for the parameters of the stereo rig are: 0.6 metres baseline betweenthe optical centres of the cameras, 30 degree angle between the principal axes ofthe cameras, and a depth of 1.5 metres from the cameras to the object. We de�nethe resolution of the system as the minimumdistance between a point and a plane,such that the point can be distinguished from the plane. At this stage we do notknow what value of resolution is required for the task of grasp planning { butabout a centimetre seems a reasonable guess.SimulationsEach camera is represented by a perspective projection matrix [3]. The intrinsicparameters of the two cameras are set as follows: focal length 8.5 mm, pixelcoordinates of principal point (256, 256), pixel width 12.7 microns, pixel height8.3 microns. The scene consists of two parallel planes separated by a perpendiculardistance of 1cm. Each plane is marked with a uniform grid of 50 points, see �gure2. The scene is projected onto the two cameras. Gaussian noise is added tothe image points. A basis set of four corresponding points is chosen and all thepoints are tested for coplanarity with this basis. A Mahalanobis distance betweena transferred point and its corresponding match is de�ned as xTC�1x where, xis the di�erence between a transferred point and its match, and C is the sum ofthe covariance matrices for the transferred point and its match. An image pointhas two degrees of freedom so the Mahalanobis distance follows a chi-squaredprobability distribution with two degrees of freedom. A threshold of 9.21 on theMahalanobis distance sets the con�dence level to 95% [10]. If the Mahalanobisdistance between a transferred point and its predicted match is less than 9.21then the point is deemed as belonging to the plane. Results are shown in �gure 3.Similar results were obtained when the experiment was repeated for di�erent setsof bases points.The two planes are only correctly discriminated when the level of noise on theimage points was down to 0.1 pixels. From these results we conclude that it isnecessary to localise image features to a precision of 0.1 pixels in order to segmentthe scene into planar regions to a resolution of one centimetre. Corner detectors
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(a) (b)
(c) (d)
(e) (f)Figure 1: The greyscale images of a stereo pair are shown in �gures (a) & (b). Ahypothesis is made of a basis set of coplanar line segments, as highlighted in �gures(c) & (d). For the a�ne case, three corresponding pairs of line segments de�nethe transformation between the two views. Line segments that follow the sametransform are grouped as being coplanar with the basis set, as shown in �gures(e) & (f).
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Figure 2: The simulated scene consists of two parallel planes separated by a 1cmgaphave been quoted to sub-pixel accuracy [13]. The position and orientation of aline segment can generally be measured with more precision than the position ofan isolated point [1]. So by using line features the system should be capable ofsegmenting a scene into planar facets to a resolution of about a centimetre.Real dataLine segments are detected using Canny's edge detector, followed by chaining, thenrecursive splitting [1]. The Canny edge detector performs an isotropc smoothingof the image, which can introduce a bias error when two edges are nearby to oneanother. In order to avoid this bias only uncluttered scenes are used. Image blur isanother cause of isotropic smoothing, hence it is necessary to ensure the camerasare well-focussed. A straight line is �tted to each chain of edgels by an orthonormalregression [3]. Lines are represented by an equation of the form Ax+By+C = 0.The uncertainty in the position of each line is computed from the residuals of thebest-�t line to the edge data [10].A basis set, consisting of four line segments, is manually selected. The pro-jective transformation between views, together with the uncertainty of the trans-formation, is computed by the method outlined in section 2. The uncertainty ofa transferred line is computed from the uncertainty of the original line and theuncertainty in the projective transformation. The line representation is convertedto the form (m,c), where y=mx+c or x=my+c depending on the line orientation,hence the same Mahalanobis distance criteria described above can be used to testpredicted matches.Figure 4 comprises a stereo pair of images and the line segments detected. In�gure 4(d) two transferred lines are shown. The upper of the two transferred linesis correctly matched by the algorithm, the Mahalanobis distance is 1:6. Despiteappearances (remember the computations are to sub-pixel accuracy) the lower of
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y(c) (d)Figure 3: Each �gure represents the image in the left camera. Figures a,b,c andd are for four di�erent levels of Gaussian noise, 0.1, 0.2, 0.3, 1.0 pixels standarddeviation, respectively. An 'x' marks image points that are computed as beingcoplanar with the basis set, and a '.' marks image points that are not. The basisset of points is highlighted with a small circle. Correct discrimination of the twoplanes only occurs in (a).



British Machine Vision Conferencethe two transferred lines is not su�ciently close to its corresponding match in orderto be deemed correct, the Mahalanobis distance is 15. In order to understand whyone line segment is accepted and the other is not, the experiment was repeated forone hundred trials. For each trial a new stereo pair of images is taken of the samestatic scene. The graphs in �gure 5 plot the parameters of the same transferredline and its corresponding match for the hundred trials. The ellipses shown in thegraphs are the computed 95% con�dence regions from the �rst trial alone. Thesize of the computed con�dence regions are of the same size as the scatter of themeasurement data, this shows that the uncertainty computed by the propagationof errors from one trial is to the right order of magnitude as the true uncertaintymeasured over a hundred trials. There is greater uncertainty in the position of atransferred line than its corresponding line because it is dependent on more imagemeasurements. The shift between the centre of each ellipse and the the scatter ofdata is because each ellipse is centred on the line parameter computed in that oneparticular trial and not on the mean value averaged over the hundred trials.The lower of the two transferred lines in �gure 4 was rejected during the �rsttrial because it happened to be on the outer limits of the distribution, as shown inthe graph in �gure 5(b). If, however, the uncertainty values are measured over thehundred trials instead of being computed from one trial then the transferred linewould be correctly matched. The Mahalanobis threshold was set to yield a 95%con�dence level, so on average one would expect to incorrectly reject 5% of thematches, but in practice we �nd that we lose a much higher proportion. Here wesuggest that it is more reliable to measure the uncertainty over a hundred trialsthan to compute the uncertainty by the propagation of errors from one trial.4 ConclusionIn this paper we have investigated the feasability of using uncalibrated stereo visionfor detecting planar regions in a scene. The results from simulations indicate thatthe resolution of a typical system is of the order of one centimetre. In practicesuch resolution has not yet been achieved, but initial results are encouraging.It is important to minimise any systematic error when implementing an algo-rithm based on a geometric computational framework [7]. For example, it wasnecessary to restrict experiments to uncluttered scenes because the Canny edgedetector introduces a bias error when two edges are nearby to one another. Weare currently replacing the Canny edge detector with one based on anisotropicdi�usion [9]. Other potential sources of systematic error include lens distortionand non-Lambertian reection causing variations in visual features between view-points. We are also currently assessing the merits of measuring the uncertaintyvalues over successive frames rather than computing the uncertainty values by thepropagation of errors. For a hardware implementation, measuring the uncertaintyis clearly preferable because no extra circuitry is required for the propagation oferrors. For future work we plan to incorporate the estimation of the Fundamentalmatrix [12] in order to provide a further constraint on the allowable transforma-tions between views, and to extend the approach to a trinocular system.
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(a) (b)
(c) (d)Figure 4: A stereo pair of images are shown in (a) & (b). The line segmentsdetected are shown in (c) & (d). The four highlighted line segments de�ne aprojective transformation between the two views. Two lines are transferred acrossfrom the left image to the right image, as shown by the continuous lines in (d).
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(b)Figure 5: Each graph plots the parameters of a transferred line and its correspond-ing match for 100 trials. In both graphs, the intercept 'c' of the line is plottedagainst the gradient 'm', where the line is of the form y=mx+c. A transferred lineis marked with an 'x' and its corresponding line segment is marked with an 'o'.The ellipses show the con�dence regions computed by the propagation of errorsfrom the �rst trial alone, hence the ellipses are centered on the value of the param-eters computed during that �rst trial. The scatter of the data from the hundredtrials reveals the true uncertainty.



British Machine Vision ConferenceReferences[1] N. Ayache. Arti�cial vision for mobile robots. MIT Press, 1991.[2] R. Cipolla, P. Had�eld, and N. Hollinghurst. Uncalibrated stereo vision withpointing for a man-machine interface. In Proc.IAPR Workshop on MachineVision Applications, pages 163{166, Kawasaki, Japan, 1994.[3] O. Faugeras. Three-dimensional computer vision. MIT Press, 1993.[4] O. Faugeras and F. Lustman. Motion and structure from motion in a piece-wise planar environment. Int. Journal of Pattern Recognition and Arti�cialIntelligence, 2(3):458{508, 1988.[5] M. Fischler and R. Bolles. Random sample consensus. Graphics and ImageProcessing, 24(6):381{395, 1981.[6] N. Hollinghurst and R. Cipolla. Uncalibrated stereo hand-eye coordination.Image and Vision Computing, 12(3):187{192, 1994.[7] K. Kanatani. Geometric computation for machine vision. Oxford UniversityPress, 1993.[8] J. Mundy and A. Zisserman. Geometric Invariance in Computer Vision. MITPress, 1992.[9] P. Perona and J. Malik. Scale-space and edge detection using anisotropicdi�usion. IEEE Trans. Pattern Analysis and Machine Intell., 12(7):629{639,1990.[10] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipesin C. Cambridge University Press, 1992.[11] D. Sinclair, A. Blake, S. Smith, and C. Rothwell. Planar region detection andmotion recovery. In Proc. British Machine Vision Conference, pages 59{68,1992.[12] P. Torr. Motion segmentation and outlier detection. PhD thesis, Universityof Oxford, 1995.[13] Z. Zhang, R. Deriche, O. Faugeras, and Q. Luong. A robust technique formatching two uncalibrated images through the recovery of the unknown epipo-lar geometry. Technical Report 2273, INRIA, France, 1994.


