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Abstract
This paper presents a method for generating sparse range data from
textured surfaces which have structured light projected onto them.  The
work is motivated by the need to measure 3-D road defects rapidly and
reliably.  Traditional approaches to computing range from stereoscopic
images have replied on either smooth or finely textured surfaces when
using structured light.  Conventional techniques that take advantage of the
inherent texture in the images are not applicable.  This is because
corresponding stereoscopic road surface views are dissimilar due to the
geometry of the cameras and the surface texture.  The method described
places initial edge points in a low resolution  version of the intensity image.
These points are used to initialise open active contour models or snakes
which are propagated via a pyramid to a higher resolution.  At this higher
resolution, internal and external constraints are applied to the snake; the
internal constraint being a smoothness functional and the external one
being based on a maximum likelihood estimate of the edge strength across
each light stripe.  Computation is spatially localised at each stage and thus
this algorithm could easily be parallelised.

1. Introduction
This paper describes a stereo multiresolution algorithm using active contour

models, prior information and an edge model.  The algorithm generates active contours
that are refined over scale.  The smoothness of the depth data is determined by a single
regularisation parameter.

1.1. Motivation
The problems associated with generating depth data from a pair of stereo images

are well known [1].  Arguably the most difficult task is establishing correspondence
between features [2] that provides depth information.  Motivation for this work stems
from the need to improve on the poor quality data obtained in manually surveying road
surfaces [3].  Inaccurate data from the surveys is believed to be a major cause of costly
errors in road repair even when expert systems are used [4].
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1.2. Related Work
Projecting light onto a 3-D surface to determine corresponding points in

stereoscopic image pairs was first discussed by Will and Pennington [5,6] who located
planar faces of polyhedral objects.  Potmesil [7] described a heuristic approach in which
the images included a set of calibration marks so that camera parameters could be
estimated.  In 1986 Hu, Jain and Stockman [8] projected a square grid onto a smooth
surface and modelled the resulting squares as textures.  The pattern elements were
classified in terms of the surfaces they formed,  such as: planar, non-planar, convex and
non-convex, using a nearest neighbour technique .  Both methods worked well but
relied on the underlying surfaces being smooth.

Other approaches have included encoding the light pattern [9] and projecting three
different patterns (generating three different images) [10]. The later approach involves
recovering unique-corresponding points (for stereo images) from a combination of three
images.  Clearly this approach is not applicable if the target scene or imaging system is
moving.

An algorithm that combines a passive illumination method with multiple
resolutions was developed by Tate and Lai [11].  In this paper it was noted that
occlusion and correspondence are the main problems.  Laser range data combined with
intensity at a coarse resolution was used to ensure correspondence across multiple
scales.  Others have described the use of projected light patterns at multiple scales [12],
but not, to the best of our knowledge, the construction of a depth map using data from
multiresolution images.  The correspondence problem is addressed using the laser range
data and where this does not exist, an interpolation method.  Further, several ad-hoc
thresholds are incorporated to ensure that the newly generated data is smooth.  Related
to this work by the use of multiple resolutions, is the work of Bajcsy and Kovacic [13]
on multiresolution elastic matching.  This work fits shape models to multiresolution
data, the fit being performed in terms of best fit to a trained model.

1.3.  Contributions of this work
• Projected light stripes combined with model based constraints to interpret stereo

images without resorting to restrictive object models.
• A careful formulation of the model energy constraints. The internal energy

constrains the snake to a straight line while the external energy is based on a
maximum likelihood function of the edge that has been shown to be well behaved
with respect to edge strength [14].  This forces the snake towards highly likely
edges.

• The problem of initialising the snakes is performed using a matched filter and prior
knowledge of stripe width and number of stripes.  The matched filter and use of a
pyramid data structure apply geometric constraints that adapt progressively as the
interpretation is refined.

• No initial estimates of depth are required as in [11].  It is unlikely that a laser
technique would work in this case due to the coarse structure of the road surface.

• The use of a single regularisation parameter to control depth data continuity.  Post
processing ([15] for example) is unnecessary since the depth data is smooth and
discontinuities are preserved.



2.  Algorithm Overview
This section gives a brief overview of the algorithm developed to establish edge points
in images with projected light.  The number of stripes, Ns, is known a priori as is the
width of the stripe.  Figure 1 shows an outline of the algorithm.  On the left hand side
of the figure the original image is sub-sampled to form lower resolution intensity
images.  At layer 2, candidate edge nodes are generated by convolving with a matched
filter that is the width of the expected stripe.  The strongest Ns responses are selected to
form the candidate edge map.  Each edge along a stripe forms an active contour model
(snake), thus there are 2Ns snakes per image.  Each snake is propagated to layer 1 and
then optimised over a limited spatial domain constrained by internal and external
energy functions together with a regularisation parameter.  When the optimum snake
has been found it is propagated to the next higher resolution (layer 0) and optimised
again.  The result of this stage is a set of corresponding edge points for each stereo pair.

Sampling rather than a Gaussian pyramid is used because: i) random noise is not a
cause for concern and ii) to avoid the increased computational cost associated with the
generating Gaussian data.  Whilst this breaks with the concept of scale-space [16] it
does not undermine the principle of the proposed algorithm.  Here the main issue is not
the preservation of a well ordered signal in scale-space but rather the initialisation of a
boundary detection process.  This approach is justified because the artifacts present in
the image are not random signals but associated with the structure being analysed.
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Figure 1.  Overview of the algorithm, on the left hand side intensity data is sub sampled
to provide lower resolutions of the original data.  On the right hand side, snakes are

formed from an initial convolution placement scheme.

3. Algorithm Detail
This section describes four parts of the algorithm: 1) the pyramid data structure, 2)

the snake formulation, 3) initial edge placement (snake initialisation), 4) snake
propagation and 5) snake optimisation and update strategy.

3.1. Pyramid structure

A three level intensity image pyramid is generated by sampling to reduce the
vertical resolution by four and the horizontal resolution by two at each step.  The lowest
resolution image is 35 by 192.



3.2.  The active contour model
The active contour model introduced by Kass et al. [17] is based on the

minimisation of  energy functions.  Generally these functions are heuristic and of an
arbitrary form and frequently formulated as energy functions.  Active contour models
do not require these heuristics to be energy terms but just to have a suitable form.  In
this work the internal and external heuristic functions are based on the cosine of an
angle and the maximum likelihood probability of an edge.  Given a set of nodes V that
form a snake, then the objective is to minimise
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Eq. 1.

where V = = =v x y i ni i i, : , ...b gm r1 2 ,
Eint is a smoothness constraint,
Eext is the external energy, such as edge strength,
and ll  are the regularisation parameters.

As noted by Lai and Chin [18], the regularisation parameters will greatly influence
the result from being dominated by the external energy when λ λ<< −1a f to being

dominated by the internal energy or smoothness when λ λ>> −1a f which in this case

would force the snake to a straight line.  Setting the regularisation parameter is a
formidable task and despite efforts of many researchers (see reference [18] for details)
the problem is unsolved for the case when the objective is to position the snake so that it
reflects the strength of each energy at each node.  The problem is not solved by the
method discussed in [18] where a minimax approach is taken to the automatic-implicit
selection of l.  Lai and Chin's method depends on the normalisation of the internal and
external energies, therefore weak edges are weighted the same as strong edges.

The approach adopted in this work is based on the assumption that external energy
terms should be adaptively weighted.  Thus weak edges have a reduced affect on the
snake.  In this work the internal energy is defined as

Eint cos /= +θa fb g1 2

where q is the angle defined in Figure 2 as the smallest angular difference between the
lines subtended between the vector pairs v vi i−1,b g and v vi i, +1b g.  Thus Eint = 0  when

v vi i−1,b g and v vi i, +1b g form a straight line and tends to 1 otherwise.
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Figure 2.  Definition of angle used in the smoothness constraint.
The external energy term is based on the maximum likelihood of the edge at vi  such
that E v L vext i n ib g b g= −1 .  The edge is assumed to be vertical and therefore the

likelihood estimate is made in the horizontal plane.  The normalised likelihood of the
edge at node vi  is defined as
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where L v L v iL i ib g b g= ∀ ∈max[ ]L  where L is a local support region defined as

L = − − + +v v v v vi i i i i2 1 1 2, , , ,l q .  Note that when L vnorm ib g =1 the edge likelihood is

a maximum.  The derivation of the maximum likelihood estimate, L(), is given in the
Appendix.

3.3. Initialising the snake
The snakes are initialised by finding the maximum Ns responses to the convolution

operation.  Since stripes are projected vertically, the intensity image is convolved with a
horizontal top-hat function Fw2 of width w2, where w2 is the expected width of the

projected light stripe at the resolution level 2, in this case w2=5.  Let Cp
 contain all

snakes at level p.  Thus the initial snake values at level 2, C2
, are based on the result of

C G F2 2 2
' *= w

where * indicates the convolution operation.  The initial snake nodes are selected as
the largest Ns responses in C2

' .  These responses represent the right hand edges of the
stripes, the left hand edges are assumed to be at the position C2 2x y wi i, −b g for a right

hand snake node at C2 x yi i,b g.
3.4. Propagating snakes in the Pyramid

Once the snakes have been initiated at C2
, they are propagated to the next highest

resolution C1
 since the resolution at layer 2 is such that any refinement is unlikely to

produce significant improvement.  A snake node at vi  in C2
 represented

C C2 2v x yi i ib g b g= ,  propagates to position C C1 1v k x k yj x i y ic h c h= , , that is, the position x

in the lower resolution projects to a new position in the higher resolution which is
simply x k where k is the scaling factor.   In addition to this, parent nodes in  C2

 have a
range of child nodes in C1

 (similarly parent nodes in C1
 have child nodes in C0

) that

are the possible sites that the snake node could move to.  These are defined for node vi

as the set S where S = − + +x y x y x y x yi i i i i i i i, , , , , , ,1 1 2b g b g b g b gm r.  This is as defined in [19]

and represents a 50% overlap in y compared with the intensity sampling.  Note that the
freedom in the snake is only in the y direction (horizontally) reflecting the expected
orientation of the edge.

3.5.  Optimisation and update strategy
For each snake V there is an associated visit set T.  Initially the procedure to

minimise Equation 1 starts at v1 and visits each snake node.  Since minimising each
node only uses the local neighbourhood, minimising Equation 1 is not explicitly
required. Thus when a snake node vi  is updated then only nodes vi−1 and vi+1 are
affected.  If vi  is not updated then the visit vector t(i) is zeroed.  If vi  is updated then
t(i-1)=t(i)=t(i+1)=1.  After the first complete iteration of the snake, a new site to be
minimised is selected as

i e v t
i

i i= argmax b gc h.



Thus the snake node with the maximum e vib g value is visited since this site

represents the worst site in terms of fitting the snake model.  Finally when T=0 the
snake has converged to a minimum.

The update rule for each snake node is different from that described in [18].  Here a
node is updated by performing a weighted-linear interpolation between the maxima of
the internal and external energies.  For a node vi  define vint  and vext as
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Figure 3 shows the complete algorithm.

Generate intensity images G1
 and G2

 from G0

Estimate edge locations for snake initialisation at layer C2

Step 1 propagate snakes to next higher resolution
Do select each snake s

Do Minimise each node
Generate visit set T

Until all nodes in s have been visited
Do Select a new node in snake s

Minimise the node
Update T

Until T=0, that is, snake s has converged
Until all snakes have converged

If not layer 0
Goto step 1

end
Figure 3.  The snake minimising algorithm.

4. Results
The algorithm has been tested on images of a laboratory road surface containing a

pot-hole.  In this work the baseline was at 2 metres, the camera separation distance was
1.3 metres and the area imaged was approximately 0.5m x 0.7m.  Figure 4 shows the
stereo pair and Figure 5 shows the depth map reconstruction from the sparse data set.



In this figure, the regularisation parameter was set to λ = 0, that is, the snake was
optimised with only the external edge parameter.  In Figure 6 the same view is shown
except that the regularisation parameter has been set to λ = 0 6. . Note that there is some
degree of variation in the areas around the hole which initially may be expected to be a
flat surface.  However, the surface of the test pot-hole is not flat because of the coarse
granularity of the surfacing material.  Subjectively, the result obtained is an accurate
interpretation; a detailed evaluation is planned.  It can be seen in Figure 5 that there are
a number of depths that are probably not correct.  In Figure 6 the same view is shown
except that the regularisation parameter has been set to λ = 0 6. .  Clearly the resulting
reconstruction is smoother than that shown in Figure 5.  In Figure 7 the dominant error
in depth estimation is shown.  The continuous plot is from Figure 5 and the dashed line
is from Figure 6.  The difference that the regularisation makes can be seen.  The cause
of this and similar errors is a node in the snake that has been incorrectly placed.
Figures 8 and 10 both show the same section of one image from the stereo pair with the
snake nodes superimposed.  Figure 8 shows the node that causes the large error shown
in Figure 5 within the boxed area and in Figure 9 it can be seen that the error has been
corrected.

   
Figure 4. Stereo pair of full resolution images with projected light stripes.
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Figure 5. Reconstruction with l=0. Figure 6. Reconstruction with l=0.6
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Figure 7. Plot showing the differences between constrained (dashed) and non-
constrained (full line) depth information.

Figure 8. Node placement l=0. Figure 9. Node placement l=0.6.

5. Conclusions
This paper has shown that a multiresolution snake can be incorporated into a 3-D

reconstruction scheme that uses light stripes and prior knowledge regarding the number
of stripes and their geometry.  In this approach, knowledge of the projected pattern is
used to constrain the search for corresponding points in a stereo image pair.  The snake
energy terms constrain how the position of initial points are altered in the higher
resolution images.  As a result, there is an implicit constraint on the corresponding
points in each image which enforces a degree of continuity in the depth map.  It has
been shown that interpretations generated from a strategy that does not include a
smoothness constraint is likely to contain errors due to local minima in the intensity
images and that the inclusion of constraints provides a reliable 3-D reconstruction of
the shape for an irregular object.  Further work will include an initial node placement
scheme that overcomes the problem of occluded stripes.
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Appendix:  Maximum Likelihood Edge Detection
The maximum likelihood principle [20] can be used to estimate the likelihood of a
given data set being drawn from a particular distribution.  In this case it has been
applied as an edge detector.  The set of grey levels W, is partitioned into two by m.  The
likelihood, L, is given by
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For the complete test, the value of m is found that maximises the likelihood.  To make
the likelihood a continuous function, the standard deviation is incremented by one so
that the range of the log likelihood function is between 0 and infinity. Thus given a
candidate edge at position, m, the refined edge position $m  is found as

$ argmax log ,m L W mm= a fl q
where
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In this work  wp,    
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Note that W is generated as averages in the vertical plane, x, such that at levels 1 and
0,  x1=5 and x0=7.


