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Abstract
Model based approaches to the interpretation of face images have proved
very successful. We have previously described statistically based models
of face shape and grey-level appearance and shown how they can be used
to perform various coding and interpretation tasks. In the paper we
describe improved methods of modelling which couple shape and grey-
level information more directly than our existing methods, isolate the
changes in appearance due to different sources of variability (person,
expression, pose, lighting), and deal with non-linear shape variation. We
show that the new methods are better suited to interpretation and tracking
tasks.

1 Introduction

Model-based approaches to the interpretation and coding of face images have proved
very successful. Methods described so far include: Modelling grey-level variation using
eigenfaces [1, 2], models based on class specific linear projection [3], combined shape
and grey level models[4, 5], models based on the physical and anatomical structure of
faces [6], 3D models [7], hand-crafted shape models [8], local non-linear shape
manifolds[9] and models based on elastic meshes coubled with local intensity pattern
descriptions[10]. Compehensive literature reviews of these techniques and other
techniques related to face interpretation can be found in [11,12,13].
The success of  a model-based approach relies on the quality of the face model used. In
general the models must fulfill two main criteria: generality and specificity. General
models are those that account for all possible sources of appearance variation in face
images. Specific models constrain the variability allowed so that only ‘legal’ examples
can be generated. In addition to these criteria successful models should be compact and
also have the potential to be used in image search algorithms. In the past we have
achieved promising results using a model-based approach [14, 15]. In this paper we
describe further developments of our models of facial appearance; by using the
improved models we aim to improve the performance of our system. In particular we
describe how shape and global grey-level variation can be modeled using a single
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rather than separate models. We also describe how the different sources of variability
can be isolated,  given a suitable training set of images. Isolating the sources of
variation can be useful in image synthesis and in tracking; where the dynamics of the
different sources of variation will differ. The models we have previously described are
based on a linear formulation. We present the results of shape modeling and image
search experiments using a non-linear formulation for modeling shape. These show
that more accurate results are obtained using the non-linear approach.

2 Overview of Our Previous Work

Our approach can be divided into two main phases: modeling, in which flexible models
of facial appearance are generated, and interpretation, in which the models are used for
coding and interpreting face images. Flexible models [16] are generated from a set of
training examples, by statistical analysis. As a result of the analysis training examples
can be reconstructed/ parameterized using:

X X Pb= +

where X is a training example, X  is the mean example, P is the matrix of eigenvectors
and b is a vector of weights , or model parameters.
Flexible models can be used for modeling shape and/or grey-level variation. We model
the shapes of facial features and their spatial relationships using a single flexible shape
model (a Point Distribution Model) [16]. The effect of the most significant shape
parameters is shown in figure 11 . Our shape model is augmented with flexible grey-
level models using two complementary approaches. In the first we generate a flexible
grey-level model of `shape-free' appearance by deforming each face in the training set
to have the same shape as the mean face (the effect of the main parameters of this
model is shown in figure 2). In the second approach we use a large number of local
profile models, one at each landmark point of the shape model. The first approach is
more complete but the second is more robust to partial occlusion[14].

                                                       
1 For the experiments described in this section the Manchester Face Database [17] was used

- 3 s.d.  --------------  + 3 s.d. Fig 1. The first 3 modes of shape
variation



- 3 s.d. ---------  + 3 s.d.

Fig 2. First 3 modes of shape-free
grey-level variation



Shape and grey-level models are used together to describe the overall appearance of
each face; collectively we refer to the model parameters as appearance parameters. It is
important to note that the coding we achieve is reversible - a given face image can be
reconstructed from its appearance parameters. When a new image is presented to our
system, facial features are located automatically using Active Shape Model (ASM)
search [16,18] based on the flexible shape model obtained during training. The
resulting automatically located model points are transformed into shape model
parameters. Grey-level information at each model point is collected and transformed to
local grey-level model parameters. Then the face is deformed to the mean face shape
and the grey-level appearance is transformed into the parameters of the shape-free
grey-level model. We have presented [14,15] results showing that this representation
can be used for image reconstruction, person identification (including gender
recognition), expression recognition and pose recovery from static images.

3 Training Combined Shape and Grey-level models

In our previous work we used separate shape and grey-level models to represent facial
appearance. However, shape and grey-level variations may be correlated;  certain
combinations of shape and grey-level modes may correspond to illegal facial
reconstructions, thus the overall model is not specific enough. For example the shape
mode of variation responsible for opening and closing the mouth is correlated with the
grey level mode responsible for the appearance of teeth. We have  generated  a
combined shape and grey-level model in order to overcome this problem. We first train
individual shape and shape-free grey-level models [14,15] and convert all training
examples to the corresponding model parameters. This results in the representation of
training examples by a vector containing both shape and grey-level parameters.
Principal component analysis is applied to the new training vectors in order to extract
the combined shape and grey-level modes of variation. Before  applying the final PCA
we scale the shape parameters so that their variance within the training set is equal to
the variance of the grey-level parameters. Figure 3 shows the first few modes of the
combined shape / grey-level model trained using images from the Home Office
Database [19]. Figure 4 shows parametric reconstructions of original images using a
combined shape and grey-level model. ( The model shown included hair. )

- 3 s.d. ------ + 3 s.d

Fig 3. First modes of combined model

Fig 4. Original images with
reconstructions



4 Isolating sources of Variation

There are four main sources of appearance variation in face images:
• Pose changes.
• Lighting changes.
• Changes due to difference in individual appearance.
• Changes due to expression, or other face movement, e.g. speaking.

In the models we have presented so far, individual modes of variation tend to be
associated with a particular source of variation. However, this is not guaranteed to be
the case. If modes corresponding to the different sources of variation could be isolated
reliably there would be several benefits. Firstly, for image synthesis applications we
could manipulate chosen characteristics without changing others, for example,
expression without ID. Secondly, for tracking, we could model the variation of the
different components independently, for example, ID modes would be expected to
remain constant whilst others would vary over time. Finally we hope that visualization
of the modes, for example, the expression modes, will provide insight into the factors
involved in recognition.

4.1 Discriminant Analysis

To achieve the desired isolation of the variation arising from the different sources, we
employ canonical discriminant analysis over the discrete range of classes of interest.
The classification is clear for person ID, where a class corresponds to a particular
individual. For expression, we choose a classification based on seven basic expressions;
happy, sad, afraid, angry, disgusted, surprised, neutral. The models shown in this
paper were trained using the pooled results from experiments involving 30 observers
assigning one of seven expressions to each image2 . The goal of canonical discriminant
analysis is to define linear combinations of a set of variables,   which separate the
classes as well as possible. If there are p variables, in a vector X, the ith discriminant
function  Z i  is given by:

 Z a X a X a Xi i i ip p= + + +1 1 2 2 L

Finding the coefficients aij is an eigenvalue problem. The within class covariance
matrix W, and the total sample covariance matrix T are found, and from these the
between class covariance is computed ( see [21] ):

B = T - W

The discriminant functions are the eigenvectors of the matrix W-1B, with the
corresponding eigenvalues describing the amount of separation, the first function

                                                       
2 For the experiments described in this section the Manchester Expression Database[20] was used.



reflecting as much class difference as possible, and so on. For computational
simplicity, we perform this analysis on the b-vectors for shape and grey-level
appearance, obtained using our conventional principle component analysis. The b-
vector for a particular example is given by:

b = Dd

where d is a vector of  discriminant parameter weights and D is the matrix of unit
eigenvectors defining the discriminant functions. The original shape/grey-level  vector
is therefore given by:

X X PDd= +

The maximum rank of D is ( no. classes - 1 ) which is normally less than the number
of b -values. Examples can be parameterized and reconstructed using the coefficients of
the d-vector ( which we call Discriminant Model Parameters.) Reconstructions of three
canonical discriminant modes for expression are shown in figure 5. Figure 6 shows the
equivalent modes for changes between individual ( ID modes ).

- 2 s.d.  ------------------------  + 2 s.d.

Fig 5 Three major discriminant modes
for expression.

- 2 s.d.  ------------------------  + 2 s.d.

Fig 6.  Three major discriminant
modes for individual.

4.2 Removing Discriminant Modes from the Principal Component Model

Having found a set of discriminant modes, we can project an example to the best least
squares approximation in discriminant space. The difference between the actual
example and it’s approximation is then used as a new training example. The new set of
examples should contain no variation due to the modes defined by the discriminant
vectors. A principle component model can be constructed using these examples, which
should now only display modes of variation orthogonal to the discriminant space. The
example in figure 7 shows the first three modes of the principle component model after
first removing variation due to change of individual. Encouragingly, there is only
slight change in the perceived individual, which indicates a good degree of separability
between individual and expression modes of variation. There remains, of course,
variation due to pose and lighting conditions.



In figure 8 both expression and ID have been removed which ought to leave only
variation due to pose and lighting. It appears to make very little difference in which
order the two sources of variation are removed. The training set used in this example
did not feature a great deal of pose variation; this accounts for the relatively small
amount of variation shown in figure 8.
The idea that the different sources of variation are completely separable is, of course, a
simplification. For example, different individuals have characteristic smiles. The
results shown in figures 5,6,7 and 8 suggest that the assumption of separability is,
however, a useful approximation.

- 2 s.d. ------------------------  + 2 s.d.

Fig 7.  First 3 principle components
after ID variation removed

- 2 s.d. -----------------------  + 2 s.d.

Fig 8.  First 2 principle components
after removing expression and ID

It is possible to construct the best least-squares fit to an image after removing sources
of variation. Figure 9 shows example of this fitting, in which the model has had
expression variation removed about the mean happy face. The model is unconstrained
in all modes orthogonal to ‘expression’ but cannot move away from ‘happy’.
Reconstructing faces in this manner may be very useful in the sythesis of virtual faces
in, for example, forensic applications.

Figure 9. Model best-fit with expression variaton removed around ‘happy’. Original
image on left. Best fit to face patch on right.

5 Using  Non-Linear Shape Models

The shape model described in our earlier work[14,15] is based on a linear formulation
which may fail when we attempt to model extreme pose variation face images. In this



section  we briefly describe how a non-linear shape model can be built using a Multi-
Layer Perceptron (MLP) and describe experiments for assessing the goodness of the
non-linear model in locating facial features when compared with the results obtained
using the linear model.

5.1 Non-Linear PDM's using Multi-Layer Perceptrons

The use of multilayer perceptrons (MLPs)  for carrying out non-linear principal
component analysis has been described by Kramer [22].  His approach involves
training an MLP to give a set of outputs which are as close as possible to the inputs,
over a training set of examples.
Recently we have described [23,24] how non-linear PDM's can be formulated using a
similar approach. During the training procedure we perform an initial linear PCA on
the training shape data. Using the basis functions calculated during this procedure we
convert all training examples to principal components and feed them into an MLP of
the form shown in figure 10.
During the training phase the weights of the network are adjusted so that the inputs of
the network are faithfully reconstructed at the output nodes. The key feature is a
“bottleneck" layer with a small number of neurons. In order to achieve outputs equal to
the inputs, the MLP is forced to code the data into a number of components equal to
the number of neurons in the bottleneck layer thus effecting a non-linear dimension
reduction. Once the MLP has been trained using the conjugate gradient decent
algorithm, we split it into an encoder and a decoder. We use the encoder to obtain the
coded representations of the training set and the decoder to reconstruct training
examples given the coded representation. Figure 11 shows schematically the
parametrization and reconstruction of training shapes using the non-linear PDM. Non-
linear PDM's can be used in image search in a similar scheme as a linear PDM [24]. A
combined image search strategy which used the non-linear model in the initial stages
of the search followed by refinement using the linear model was also investigated[24].

Fig 10. Structure of the MLP
Fig 11.  Shape Space / Parameter

Space Projections



5.2 Performance of Non-Linear Face Models

We trained a linear PDM and a non-linear PDM (or MLP-PDM) using the same
training data as that used previously (see section 2).  The linear PDM needed 16 shape
parameters to explain 99% of the variability in the training set whilst the MLP-PDM
needed only eight. This implies that there where non-linear dependencies between the
modes of variation in the linear model and that, as a result, it must be capable of
generating illegal solutions. The MLP-PDM model was substantially more compact
and thus more specific. The first few significant modes of variation for both the linear
PDM and MLP-PDM are similar. We have carried out systematic experiments to
compare the performance of linear PDMs and MLP-PDMs in the context of their
ability to locate facial features using ASM search [16, 18]. We have tested the fitting
procedure by fitting the model to 40 face images. We performed two main experiments.
For the first experiment the initial pose was chosen randomly within the following
limits:  rotation of +/-20 degrees, displacement from the correct position by +/- 30
pixels, and starting scale of 0.6 to 1.4 of the mean scale. These limits usually resulted
in a very poor starting point for the iterative search procedure. For the second set of
experiments the initial pose was defined within narrower limits: rotation of +/-10
degrees, displacement from the correct position by +/- 10 pixels, and starting scale of
0.8 to 1.2 of the mean scale. For both experiments, the model was initialized to the
mean shape. For each test image we fitted the models using three different initial poses
giving a total of 120 number of trials. The correct positions for all 144 model points
were marked manually on all the test images. At each iteration of the ASM search the
goodness of fit,  defined as the mean Euclidean distance, d, between the positions of
the model points and their correct positions, was calculated. Figure 12  summarizes the
results of the experiments; the graphs show the average value of d  against the iteration
number, over all 120 model fitting trials.  In experiment 1 ASM search using an MLP-
PDM performs better than the linear PDM. For experiment 2 where the starting
position of the model is on average closer to the target, image search using a linear
PDM performs better. The performance of the combined method is better in both
experiments than search using either a linear PDM or an MLP-PDM alone.

Fig 12.  Results for the image search experiments



6. Conclusions

We have described our work in progress on developing improved models of facial
appearance. We have shown that it is feasible to model both grey-level and shape
variation using a single model resulting in a more specific overall model. By using
discriminant analysis techniques we have shown that modes corresponding to different
sources of variation can be isolated. The next step is to use these decoupled modes to
track faces in image sequences.  We have also described how a non-linear PDM can be
built and we have presented results for locating facial features. These results show that,
when the initial placement of the model is bad, image search using  the non-linear
shape model  performs better than image search using a linear PDM. The reason for
this is the ability of the MLP-PDM to be more specific to the class exemplified by the
training set. The domain of possible solutions is reduced since only plausible solutions
are allowed, resulting in an increased chance of locating image objects successfully.
However, when the starting position is good, image search using a linear PDM
performs better, since in this case models are unlikely to be driven to illegal shapes.
Image search using a combination of linear and non-linear models proved to be the
most robust and accurate in our experiments.
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