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Abstract

Model based approaches to the interpretation of face images have proved
very successful. We have previously described statistically based models
of face shape and grey-level appearance and shown how they can be used
to perform various coding and interpretation tasks. In the paper we
describe improved methods of modelling which couple shape and grey-
level information more directly than our existing methods, isolate the
changes in appearance due to different sources of variability (person,
expression, pose, lighting), and deal with non-linear shape variation. We
show that the new methods are better suited to interpretation and tracking
tasks.

1 Introduction

Model-basedhpproacheso the interpretationand coding of face imageshave proved
very successful. Methods describedaanclude:Modelling grey-levelvariationusing
eigenface$l, 2], modelsbasedon classspecificlinear projection[3], combinedshape
andgrey level models[4,5], modelsbasedon the physicaland anatomicalstructureof

faces[6], 3D models[7], hand-craftedshape models [8], local non-linear shape
manifolds[9]and modelsbasedon elasticmeshesxoubledwith local intensity pattern
descriptions[10]. Compehensiveliterature reviews of these techniquesand other
techniques related to face interpretation can be found in [11,12,13].

The success of model-base@pproachrelieson the quality of the facemodelused.In

generalthe modelsmustfulfill two main criteria: generalityand specificity. General
modelsare thosethat accountfor all possiblesourcesof appearanceariationin face
images.Specificmodelsconstrainthe variability allowedsothatonly ‘legal’ examples
can be generated. In addition to these critawizcessfumodelsshouldbe compactand
also havethe potentialto be usedin image searchalgorithms.In the pastwe have
achievedpromisingresultsusing a model-baseapproach14, 15]. In this paperwe

describefurther developmentsof our models of facial appearancepy using the

improvedmodelswe aim to improve the performanceof our system.In particularwe

describehow shapeand global grey-level variation can be modeledusing a single
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ratherthan separatanodels.We also describehow the different sourcesof variability
can be isolated, given a suitabletraining set of images.Isolating the sourcesof
variationcanbe usefulin imagesynthesisandin tracking; wherethe dynamicsof the
differentsourcesof variationwill differ. The modelswe havepreviouslydescribedare
basedon a linear formulation. We presentthe resultsof shapemodelingand image
searchexperimentsusing a non-linearformulation for modeling shape.Theseshow
that more accurate results are obtained using the non-linear approach.

2 Overview of Our Previous Work

Our approach can be divided into two main phases: modeling, in which flexidels
of facial appearance are generated, and interpretation, in which the ededsdfor

codingandinterpretingfaceimages.Flexible models[16] are generatedrom a setof

training examplespy statisticalanalysis.As a resultof the analysistraining examples
can be reconstructed/ parameterized using:

X =X +Pb

whereX is a training examplex is the mean exampl®,is thematrix of eigenvectors
andb is a vector of weights , or model parameters.

Flexible modelscanbe usedfor modelingshapeand/orgrey-levelvariation.We model
the shapes of facial featurasdtheir spatialrelationshipausinga singleflexible shape
model (a Point Distribution Model) [16]. The effect of the most significant shape
parameterss shownin figure 1' . Our shapemodelis augmentedwith flexible grey-
level modelsusingtwo complementaryapproachedn the first we generatea flexible
grey-levelmodelof “shape-freeappearancéy deformingeachfacein the training set
to havethe sameshapeas the meanface (the effect of the main parametersf this
modelis shownin figure 2). In the secondapproachwe usea large numberof local
profile models,one at eachlandmarkpoint of the shapemodel. The first approachis
more complete but the second is more robust to partial occlusion[14].

-3s.d. - + 3 s.d. Fig 1. The first 3 modes of shape
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Fig 2. First 3 modes of shape-free
grey-level variation



Shapeand grey-levelmodelsare usedtogetherto describethe overall appearancef
each face; collectively weeferto the modelparameterasappearancparametersit is
importantto notethatthe codingwe achieveis reversible- a given faceimagecanbe
reconstructedrom its appearanc@arametersWhena newimageis presentedo our
system,facial featuresare located automaticallyusing Active ShapeModel (ASM)
search[16,18] basedon the flexible shape model obtained during training. The
resulting automatically located model points are transformedinto shape model
parameters. Grey-level informatiabheachmodelpointis collectedandtransformedo
local grey-levelmodel parametersThenthe faceis deformedto the meanface shape
and the grey-level appearancés transformedinto the parameterof the shape-free
grey-levelmodel. We havepresented14,15] resultsshowingthat this representation
can be used for image reconstruction, person identification (including gender
recognition), expression recognition and pose recovery from static images.

3 Training Combined Shape and Grey-level models

In our previouswork we usedseparateshapeandgrey-levelmodelsto representacial

appearanceHowever, shapeand grey-level variations may be correlated; certain

combinations of shape and grey-level modes may correspondto illegal facial

reconstructionsthusthe overall modelis not specificenough.For examplethe shape
modeof variationresponsibldor openingandclosingthe mouthis correlatedwith the

grey level mode responsiblefor the appearancef teeth. We have generated a

combined shape and grey-level model in otdeyvercomethis problem.We first train

individual shapeand shape-freegrey-level models[14,15] and convertall training

exampledo the correspondingnodelparametersThis resultsin the representatiomf

training examplesby a vector containing both shape and grey-level parameters.
Principalcomponentnalysisis appliedto the newtraining vectorsin orderto extract
the combinedshapeandgrey-levelmodesof variation.Before applyingthe final PCA

we scalethe shapeparametersothattheir variancewithin the training setis equalto

the varianceof the grey-levelparametersFigure 3 showsthe first few modesof the

combined shape/ grey-level model trained using images from the Home Office

Databasd19]. Figure 4 showsparametricreconstruction®f original imagesusing a

combined shape and grey-level model. ( The model shown included hair. )

Fig 3. First modes of combined model

Fig 4. Original images with
reconstructions



4 |solating sources of Variation

There are four main sources of appearance variation in face images:

* Pose changes.

» Lighting changes.

» Changes due to difference in individual appearance.

* Changes due to expression, or other face movement, e.g. speaking.

In the modelswe have presentedso far, individual modesof variation tend to be
associatedvith a particularsourceof variation.However,this is not guaranteedo be
the case If modescorrespondingo the different sourcef variationcould be isolated
reliably therewould be severalbenefits.Firstly, for image synthesisapplicationswe
could manipulate chosen characteristicswithout changing others, for example,
expressionwithout ID. Secondly,for tracking, we could model the variation of the
different componentsindependently for example,ID modeswould be expectedto
remainconstanwhilst otherswould vary overtime. Finally we hopethat visualization
of the modes for example the expressiormodes,will provideinsightinto the factors
involved in recognition.

4.1 Discriminant Analysis

To achievethe desiredisolationof the variationarising from the different sourceswe

employ canonicaldiscriminantanalysisover the discreterangeof classesf interest.
The classificationis clear for personID, where a classcorresponddo a particular
individual. For expression, we choose a classification based on Isasieexpressions;
happy, sad, afraid, angry, disgusted,surprised,neutral. The models shown in this

paperweretrainedusingthe pooledresultsfrom experimentsnvolving 30 observers
assigning one of seven expressions to éaeye . The goal of canonicaldiscriminant
analysisis to define linear combinationsof a set of variables, which separatehe

classesaswell aspossiblelf therearep variables,in a vector X, theith discriminant
function Z; is given by:

Z =ay X, +a,X,+-+a, X

Finding the coefficients g;; is an eigenvalueproblem. The within class covariance
matrix W, and the total samplecovariancematrix T are found, and from thesethe
between class covariance is computed ( see [21] ):

B=T-W

The discriminant functions are the eigenvectorsof the matrix W™'B, with the
correspondingeigenvaluesdescribing the amount of separation,the first function

2 For the experiments described in this section the Manchester Expression Database[20] was used.



reflecting as much class difference as possible, and so on. For computational
simplicity, we perform this analysis on the b-vectors for shape and grey-level
appearancegbtainedusing our conventionalprinciple componentanalysis.The b-
vector for a particular example is given by:

b=Dd

whered is a vectorof discriminantparametemweightsand D is the matrix of unit
eigenvectorslefining the discriminantfunctions.The original shape/grey-levelvector
is therefore given by:

X =X +PDd

The maximumrankof D is ( no. classes 1) whichis normally lessthanthe number

of b -values. Examples can be parameterized and reconstructed using the coefficients
the d-vector ( which we cabiscriminant Model Parameters.) Reconstructionsf three
canonical discriminant modes fekpressiorareshownin figure 5. Figure6 showsthe
equivalent modes for changes between individual ( ID modes ).

-2s.d. + 2 s.d. -2s.d. + 2 s.d.

Fig 5 Three major discriminant modes Fig 6. Three major discriminant
for expression. modes for individual.

4.2 Removing Discriminant Modes from the Principal Component Model

Having found a setof discriminantmodeswe can projectan exampleto the bestleast
squaresapproximationin discriminant space. The difference betweenthe actual
example and it's approximation is then used as a new training exarhpleew setof
examplesshould contain no variation due to the modesdefined by the discriminant
vectors.A principle componenmodelcanbe constructedisingtheseexampleswhich
shouldnow only displaymodesof variationorthogonatto the discriminantspace.The
example in figure 7 shows the first thre@desof the principle componenmodelafter
first removing variation due to changeof individual. Encouragingly,there is only
slight change in the perceived individuahich indicatesa gooddegreeof separability
betweenindividual and expressionmodes of variation. There remains, of course,
variation due to pose and lighting conditions.



In figure 8 both expressionand ID have beenremovedwhich oughtto leave only

variationdueto poseand lighting. It appeargo makevery little differencein which

orderthe two sourcesf variationare removed.The training setusedin this example
did not featurea greatdeal of posevariation; this accountsfor the relatively small
amount of variation shown in figure 8.

Theideathatthe differentsourcesf variationare completelyseparablés, of coursea

simplification. For example, different individuals have characteristicsmiles. The
resultsshownin figures 5,6,7 and 8 suggestthat the assumptionof separabilityis,

however, a useful approximation.

-2s.d. + 2 s.d.

_ : — Fig 8. First 2 principle components
Fig 7. First 3 principle components after removing expression and 1D
after ID variation removed

It is possibleto constructthe bestleast-squareft to animageafter removingsources
of variation. Figure 9 shows exampleof this fitting, in which the model has had
expressiorvariationremovedaboutthe meanhappyface. The modelis unconstrained
in all modes orthogonal to ‘expression’ but cannot move away from ‘happy’.
Reconstructindacesin this mannermay be very usefulin the sythesisof virtual faces
in, for example, forensic applications.

Figure 9. Model best-fit with expression variaton removed around ‘happy’. Original
image on left. Best fit to face patch on right.

5 Using Non-Linear Shape Models

The shapemodeldescribedn our earlierwork[14,15]is basedon a linear formulation
which may fail whenwe attemptto modelextremeposevariationfaceimages.In this



section we briefly describehow a non-linearshapemodelcanbe built usinga Multi-

Layer PerceptronfMLP) and describeexperimentsor assessinghe goodnesof the
non-linearmodelin locating facial featureswhen comparedwith the resultsobtained
using the linear model.

5.1 Non-Linear PDM's using Multi-Layer Perceptrons

The use of multilayer perceptrons(MLPs) for carrying out non-linear principal
componentanalysis has been describedby Kramer [22]. His approachinvolves
training an MLP to give a setof outputswhich are as closeas possibleto the inputs,
over a training set of examples.

Recentlywe havedescribed23,24] how non-linearPDM's can be formulatedusing a
similar approachDuring the training procedurewe performan initial linear PCA on
the training shapedata.Using the basisfunctionscalculatedduring this procedurewe
convertall training exampledo principal componentand feedtheminto an MLP of
the form shown in figure 10.

During the training phasethe weightsof the networkare adjustedso that the inputs of
the network are faithfully reconstructedat the output nodes.The key featureis a
“bottleneck" layer with a small numbef neuronsin orderto achieveoutputsequalto
the inputs,the MLP is forcedto codethe datainto a numberof componentsqualto
the numberof neuronsin the bottlenecklayer thus effecting a non-lineardimension
reduction. Once the MLP has been trained using the conjugate gradient decent
algorithm,we split it into an encoderanda decoderWe usethe encodelto obtainthe
coded representation®f the training set and the decoderto reconstructtraining
examples given the coded representation.Figure 11 shows schematically the
parametrization anceconstructiorof training shapesisingthe non-linearPDM. Non-
linear PDM's can be used in image seanchsimilar schemeasa linearPDM [24]. A
combinedimagesearchstrategywhich usedthe non-linearmodelin the initial stages
of the search followed by refinement using the linear model was also investigated[24].
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5.2 Performance of Non-Linear Face Models

We trained a linear PDM and a non-linear PDM (or MLP-PDM) using the same
training dataasthatusedpreviously(seesection2). Thelinear PDM neededL6 shape
parameterso explain 99% of the variability in the training setwhilst the MLP-PDM
needednly eight. This impliesthat therewherenon-lineardependenciebetweerthe
modesof variation in the linear model and that, as a result, it must be capableof
generatingillegal solutions.The MLP-PDM model was substantiallymore compact
andthusmorespecific. The first few significantmodesof variationfor boththe linear
PDM and MLP-PDM are similar. We have carried out systematicexperimentsto
comparethe performanceof linear PDMs and MLP-PDMs in the context of their
ability to locatefacial featuresusing ASM search[16, 18]. We havetestedthe fitting
procedure by fitting the model to 40 face images. We performed twoaxpériments.
For the first experimentthe initial posewas chosenrandomly within the following
limits: rotation of +/-20 degreesgdisplacemenfrom the correctposition by +/- 30
pixels,andstartingscaleof 0.6 to 1.4 of the meanscale.Theselimits usuallyresulted
in a very poor startingpoint for the iterative searchprocedure For the secondset of
experimentsthe initial posewas defined within narrower limits: rotation of +/-10
degreesdisplacemenfrom the correctpositionby +/- 10 pixels, and starting scaleof
0.8to 1.2 of the meanscale.For both experimentsthe model was initialized to the
mean shape. For each test imagditied the modelsusingthreedifferentinitial poses
giving a total of 120 numberof trials. The correctpositionsfor all 144 model points
weremarkedmanuallyon all the testimages.At eachiterationof the ASM searchthe
goodnesof fit, definedasthe meanEuclideandistanced, betweenthe positionsof
the model points and their correct positions, was calculkigdre12 summarizeshe
results of the experiments; the graphs show the average valuagsdinstheiteration
number, over all 120 modétting trials. In experimentl ASM searchusingan MLP-
PDM performs better than the linear PDM. For experiment2 where the starting
position of the modelis on averagecloserto the target,image searchusing a linear
PDM performsbetter. The performanceof the combinedmethodis betterin both
experiments than search using either a linear PDM or an MLP-PDM alone.
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Fig 12. Results for the image search experiments



6. Conclusions

We have describedour work in progresson developingimproved models of facial

appearanceWe have shownthat it is feasibleto model both grey-level and shape
variation using a single model resultingin a more specific overall model. By using

discriminantanalysistechniquesve haveshownthat modescorrespondingo different

sourcesof variationcanbeisolated.The next stepis to usethesedecoupledmodesto

track faces in imagsequencesWe havealsodescribechow a non-linearPDM canbe

built and we have presented results for locating fdeslres Theseresultsshowthat,

whenthe initial placementof the modelis bad,image searchusing the non-linear
shapemodel performsbetterthanimagesearchusinga linear PDM. The reasonfor

this is the ability of the MLP-PDM to be more specificto the classexemplifiedby the

training set. The domainof possiblesolutionsis reducedsinceonly plausiblesolutions
are allowed, resultingin an increasedchanceof locating image objectssuccessfully.
However, when the starting position is good, image searchusing a linear PDM

performsbetter,sincein this casemodelsare unlikely to be drivento illegal shapes.
Image searchusing a combinationof linear and non-linearmodelsprovedto be the

most robust and accurate in our experiments.
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