
A�ne Visual ServoingGeo�rey M.T. Cross and Roberto CipollaDepartment of Engineering, University of Cambridge,Cambridge, CB2 1PZ.f92gmtc,cipollag@eng.cam.ac.ukAbstractSmall movements of a viewer relative to the surrounding scene inducedeformations in the shape and detail of the projected image. Thispaper will consider the problem of using these deformations to providevisual feedback on the current position of the viewer relative to thescene.The implementation calculates the transformations that occur dueto small movements around the current position. If a \target" trans-formation is speci�ed, the equivalent motion can be interpolated. As aresult, it is possible to position the viewer relying solely on visual feed-back. All the calibrations required are performed within the algorithm,and the system is assumed to work using an uncalibrated camera.1 IntroductionViewing a three dimensional world projected onto a two dimensional plane causesthe image produced by a conventional camera to be both ambiguous and di�cultto interpret automatically. The ability to navigate around obstacles with theinformation from a single viewpoint is one that most living beings can develop,but is di�cult to implement into an arti�cial system. In essence, the problem isone of learning the structure of a scene and then being able to maneuver withinthe scene to a prede�ned position exploiting visual cues only.By inducing relative motion between the viewer and the scene, the image �eldis augmented to a velocity �eld, and the details of these deformations have beenshown to encode further information about the structure of the scene which canbe useful for visual navigation. Many representations of these image velocity �eldshave been attempted and an economical approach is to decompose the transforma-tions into the �rst order di�erential invariants of the image velocity �eld [4, 10]|the curl, divergence and deformation components.This paper will demonstrate a method of using these invariants to providean accurate estimate of the relative distance to a surface by simply tracking a
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contour on the surface in the image plane during deliberate movements of theviewer relative to the scene.Building on this technique the paper will then demonstrate a robust method ofreturning to a prede�ned target position in the scene. This is achieved by quanti-fying the transformation that has occurred due to a disturbance from this targetposition, and moving in such a way as to reverse this transformation. Such taskscould be used for many di�erent problems, but notably in all visual navigationtasks.2 Relative Depth from Image DivergenceContours on a distant surface are naturally seen to deform as the viewer movesrelative to the scene. Furthermore, these deformations have been shown to en-code both the motion of the viewer and the structure (depth and orientation) ofthe surface. If the viewer motion is known, as is the case in most active visionapplications [3, 4] the structure of the surface contour can be extracted.2.1 ReviewFor the following analysis the image velocity �eld is decomposed into its �rstdi�erential invariants [10], namely the curl (vorticity), divergence (dilation) anddeformation (pure shear) components.For a su�ciently small �eld of view and smooth change in view point, thedi�erential invariants depend only on the viewer motion (translational velocity,U, and rotational velocity, 
), the surface depth, Z, and the relation between theviewing direction (optical axis, Q) and the surface normal. A change of coordinatesystem would not have any e�ect on the results to be derived below [10, 8, 4].De�ning the vector quantities A and F asA = U� (U �Q)QZ (1)F = frZZ (2)where f is the focal length1 of the camera and lens, it is possible to obtain a simpleand useful relationship between the ego-motion of the viewer, and the divergencein the image velocity �eld [9]:divv = 2U �QZ + F �A : (3)1The constant distance between the optical centre and the image plane.
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2.2 Relation between Divergence and Time to ContactThe use of equation (3) in the �eld of visual servoing (and many other uncalibratedvisual navigation tasks) stems from the special case of motion by the viewer alongthe optical axis, towards the surface. In this case, the ray direction,Q, is parallel tothe translation direction,U. By ensuring that the length ofQ is unity, equation (3)reduces to the form divv = 2 jUjZ = 2tc (4)where tc is the time to contact2.2.3 Estimating the Image DivergenceIt has been shown [4] that a robust calculation of the di�erential invariants canbe made from the area moments of closed contours within the image plane. If awell-de�ned closed contour, at the centre of the image, on the surface of interest istracked as the viewer proceeds along the optical axis (as described above), the con-tour will appear to undergo an isotropic expansion. By estimating the divergencefrom the �rst moment of area of this closed contour, point and line correspondencecalculations are avoided. This results in a simple contour integration to evaluatethe divergence, which has the e�ect of averaging any image noise over a large areaof the image and leads to reliable estimates. It can be shown thatda(t)dt = Z Za(t)r�vdxdy � a(t)divv (5)where a(t) is the area enclosed by the contour.Substituting equation (3) into (5) and solving the linear di�erential equationfor the case where the viewer velocity, U, is a constant (and therefore the time tocontact decreases linearly) leads to the required solution (see also �gure 1)a(t) = a(0)� tc(0)tc(t) �2 : (6)2.4 Implementation2.4.1 AlgorithmThe following algorithm is adopted to provide a robust measurement of the timeto contact to a surface (and hence a measurement of the distance to this surface).The experiments were performed using a uncalibrated CCD camera held in thegrippers of the manipulating arm of a Scorbot ER-7 robot arm. All processing isperformed in real-time on a single Sun SPARCstation 20.2The time duration before the viewer and the surface collide if the motion is held constant [7].
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Figure 1: This is a sequence through a CCD camera as the viewer is deliberatelymoved towards a surface contour. As the sequence progresses, the apparent areaenclosed by the contour is seen to increase and this provides enough informationto extract the time to contact or relative depth of the surface.1. Initialise a closed B-spline snake around a contour on the surface [5]. Thesnake is allowed to \lock on" to the contour by deforming it according to thelocal intensity gradient. A region of search is speci�ed, and this is reducedas the snake moves closer to the contour. In practice, 20 to 40 control pointswere used depending on the complexity of the contour (gradient discontinu-ities in the B-spline can be modelled by placing two or more control pointsat the same position).2. The contour can now be tracked as the viewer moves, and a re�nement isto constrain the deformations of the snake to a�ne transformations [6]|pure rotations, isotropic expansions, and shears about an arbitrary axis (see�gure 2). A result of this assumption is that the computational load of thecontour tracking is signi�cantly reduced, and the snake is more robust to thedistractions from background scenery and contours.3. The viewer is deliberately moved towards to surface along the optical axis,at a constant velocity. The area enclosed by the B-spline snake is recordedat regular intervals by integrating around the contour using Green's Theo-rem [11].4. By linearizing equation (6) and �tting the area measurements to a straightline via a least-squares technique, noise due to quantisation can be reduced.2.4.2 ResultsFollowing the algorithm above, the camera was started at a distance of approx-imately 50cm from the surface. The time to contact was estimated to 1 part in
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a) Rotation b) Isotropic Expansion c) Pure ShearFigure 2: An a�ne transformation is a linear combination of a) rotations (de�nedby one angle in 2D), b) isotropic expansions (de�ned by one scale factor), and c)shears (de�ned by an axis, and a scale factor).100 by taking 20 area measurements during the motion towards the surface (see�gure 3).
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Figure 3: The �rst graph depicts the normalized area of the closed contour asit gets closer to the viewer at a constant rate. By linearizing equation (6) andreplotting the data, we have demonstrated how accurately the theory supportsthe experimental results.3 Closed-Loop Visual NavigationThe problem with the approach described above for determining the distance of asurface from a viewer is that it relies on the accuracy of only one estimate of thetime to contact and no further feedback can be provided beyond this point. Theorientation of the surface has also been ignored, but a similar approach can be con-sidered with viewer motion perpendicular to the optical axis rather than parallel
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to it [3] (the measurements are very susceptible to quantisation and inaccuraciesin the assumed viewer motion).In this section, we will describe a method of closing the control loop, andtherefore providing feedback information on the quality of the measurements. Theresult of this construction is that much more coarse estimates can be made, andthe errors reduced iteratively.3.1 Image Field TransformationsA camera in free-space has six degrees of freedom, but if we place the constraintthat the optical axis should be �xated towards a �xed position on the surface, thecoordinate system is reduced to four dimensions. For the purposes of this paper,we shall de�ne the coordinate system as in �gure 4.

Figure 4: The camera coordinate system used in section 3.1 for a camera �xatedon a point in the scene speci�es three angle rotations, !1, !2 and !3, and a depthscale factor, d.Any motion of the camera in one of these four independant directions inducesdeformations of the image, and therefore an image velocity �eld can be constructed.The requirement that the camera remains �xated on a point on the surface ensuresthat the velocity �eld does not contain any translational component, and can bewritten at a point (x; y) in the image as: uv ! �  ux uyvx vy ! xy ! (7)where (ux; uy; vx; vy) are the �rst order partial derivatives of the velocity withrespect to the subscript.This transformation clearly has four degrees of freedom which correspond tothe four degrees of freedom of the viewing camera.
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3.2 Calibrating the Transformation FieldFollowing on from the previous section, the camera can make small movements ineach of its four axes and record the transformations that take place in the image�eld. In general, the e�ect of \rolling" about the !3-axis is a rotation in the imageplane, and a change of relative depth, d, induces an isotropic expansion (section 2).Each of these perturbations will induce an image plane transformation, andfour such transformations complete the parameterisation. These transformationscan be expressed as 2-D matrices as in equation (7): T!1 , T!2 , T!3 , and Tdwhere the subscript references the axis in which the motion was made. As themovements of the camera are independent, it is clear that these matrices are non-singular (moving the camera back inverses the transformation) and associative(the order of the movements is not important, as the axes are independent) inmultiplication.If we now assume that the transformation �eld is linear for small perturba-tions of the camera, it can be inferred that, for example, three movements eachcausing a transformation T will result in an overall transformation T3. Further,a transformation in the !1 direction followed by a transformation in the !2 direc-tion will induce an overall transformation of T!1T!2 . A general movement of thecamera given by the four dimensional vector, (�!1;�!2;�!3;�d), will induce atransformation, F, whereF(�!1;�!2;�!3;�d) = (T!1)�!1 (T!2)�!2 (T!3)�!3 (Td)�d : (8)3.3 Visual FeedbackWithin the range of validity of equation (8), it should be possible to identifythe motion in the four dimensional space that would have induced any a�netransformation in the image plane. This is the basic requirement of a visualservoing system.If the transformation observed is represented by matrix S, the motion can befound by solving S = F(�!1;�!2;�!3;�d) : (9)Unfortunately there does not appear to be an analytical solution to this problem,and therefore the solution must be found by an iterative solution, which in itselfrequires an \error function" to be de�ned (see section 3.5).3.4 Computing the TransformationsThe results obtained with this algorithm depend on being able to estimate thelinear transformation between two images. This in turn requires correspondences
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to be tracked as the images change. Two methods are now described:� The centroid of a closed contour is invariant as the image deforms accordingto the a�ne constraints. Therefore each closed contour that can be trackedin the image provides one correspondence between images. It is necessaryto obtain at least two correspondences, and therefore this method requirestwo independant closed B-spline snakes to follow two contours on the surfaceof interest. In practice, most real surfaces have many suitable contours totrack, which makes this method viable, but computationally expensive.� A large number of matches can be obtained by considering the control pointsof one B-spline snake to provide correspondences between the images. TheAperture Problem [1] states that this method should not work correctly, asthe snake has no way of extracting the component of tangential velocity tothe curve. However the errors can be minimized by ensuring that the seconddi�erential of the contour position is as large as possible (i.e. that the curvedoes not have long smooth regions), and in practice the method has beenshown to work well. Constraining the snake to deform a�nely [6] also helpssolve this problem.Both these methods provide two sets of position vectors (one for the startingimage, and one for the image after the camera has been moved)yn =  yn;1yn;2 ! and y0n =  y0n;1y0n;2 ! (10)where n = 1 : : :m and m is the number of correspondences found. The transfor-mation S is required which will transform the �rst image onto the second with aslittle error as possible. We wish, therefore, to �nd the transformation, S, whichwill minimize mXn=1 jyn � Sy0nj2 : (11)3.5 Approximating the Position ErrorIn section 3.3 we introduced the relationship between the overall observed trans-formation, S, and the displacements, �!1, �!2, �!3 and �d. Equation (11)provides a good cost function, and by adjusting the variables until a minimumvalue is identi�ed, very good estimates of the overall displacements are found.The problem can be expressed as:min�!1;�!2;�!3;�d mXn=1 ���yn � (T!1)�!1 (T!2)�!2 (T!3)�!3 (Td)�d y0n���2 : (12)



British Machine Vision Conference
The calibration transformations can be found from a least squares �t to equa-tion (11).Techniques for solving this optimization are available, and both Hooke andJeeves (see [2] for a description of this optimization method) and the standardnon-linear least squares optimization methods have been shown to be suitable. Itshould be noted that equation (8) is only valid for small values of �!1, �!2, �!3and �d which reduces the search region signi�cantly.3.6 Implementation3.6.1 AlgorithmThe following algorithm outlines one implementation of this method of visualservoing:1. Initialise a closed B-spline snake around a contour feature on the surface ofinterest, and start to track the contour as described in section 2.4.1. Whilecontinually tracking the snake, the camera should be moved to the targetposition.2. Record the target image as a set of points on the image de�ned by theposition of the control points of the B-spline snake. A large number of pointsensures that small errors due to the Aperture Problem will not be signi�cantlater in the experiment, and 20 points were used in our implementation.3. Perturb the camera position to a new position, ensuring that the contour iscontinually tracked and centered in the image �eld.4. Perform three3 calibrating motions in each of the three dimensions and mea-sure the resulting transformation of the B-spline snake for each of thesemotions.5. The solution to equation (12) is found using the Hooke and Jeeves searchmethod. The variables should be constrained to ensure they remain withinthe validity of equation (8). This part of the algorithm is the most compu-tationally expensive, but in practice, the optimization converged within 1 to2 seconds.6. Use the motion vector obtained from the previous step to move the cameratowards the target, and repeat from step 4.3As described in section 2.4.1, the robot arm used for these experiments only had 5 degreesof freedom, and therefore the camera position has only 3 degrees of freedom if it is �xated on apoint in the scene.
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3.6.2 ResultsStarting from a position about 50cm from the target position, the camera positionconverged very quickly towards to target. It was found that 3 iterations werenecessary to place the camera to within 5mm of the target position (table 1 and�gure 3.6.2). Iteration Vector to target Distance to targetx y z (in cm)0 25.2 -10.0 -22.0 34.51 17.3 -8.7 -15.3 24.72 10.1 -3.0 3.0 11.03 1.8 0.0 1.0 2.14 0.1 0.2 0.8 0.85 0.1 -0.1 -0.4 0.46 0.0 0.0 0.3 0.3Table 1: An example of the convergence rate for the a�ne visual servoing algo-rithm. The camera is started at a distance of 34.5cm from a target position, andover 3 iterations, it is maneuvered to within 1cm of the target. Further iterationsoscillate within 1cm of the target.4 ConclusionsThe image divergence can be accurately extracted from a closed contour imagesequence. It provides an excellent algorithm for estimating the time to contactbetween a surface and a viewer simply by tracking a contour on the as the cam-era moves towards the surface. A similar technique can be used to estimate theorientation of the surface, by moving the camera in a plane perpendicular to theoptical axis. However the deformations are small and are not accurately estimatedby the divergence alone.Visual feedback provides a more robust method of estimating the camera posi-tion relative to a \target" position. The technique can be used on an uncalibratedsystem, and provides excellent results. Currently the calibration matrices must beobtained by deliberately moving the camera at the start of each iteration of thefeedback loop. However future work will involve inferring these transformationsfrom the data gathered during the previous iterations|calibrating moves will onlybe made if necessary (due to the lack of data from previous moves).
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Figure 5: The �rst image depicts a target image, and the following three imagesdepict the viewer image before the �rst iteration, after the �rst iteration, and afterthe third iteration. Clearly, the �nal image exhibits almost no transformationsfrom the initial target image.References[1] F. Bergholm. Motion from 
ow along contours: a note on robustness andambiguous case. In International Journal of Computer Vision, pages 3:396{415, 1989.[2] G.S.G. Beveridge and R.S. Schechter. Optimization: Theory and Practise.McGraw-Hill, 1990.[3] R. Cipolla. Active Visual Inference of Surface Shape. Lecture Notes in Com-puter Science 1016 Springer-Verlag, 1995.[4] R. Cipolla and A. Blake. Surface orientation and time to contact from imagedivergence and deformation. In G. Sandini, editor, 2nd European Conferenceon Computer Vision, pages 187{202. Springer-Verlag, 1992.[5] R. Cipolla and A. Blake. Surface shape from the deformation of apparaentcontours. In International Journal of Computer Vision, pages 9(2):83{112,1992.[6] N.J. Hollinghurst and R. Cipolla. Uncalibrated stereo and hand-eye coordi-nation. Image and Vision Computing, pages 12(3):187{192, 1994.
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