
Detecting and tracking linear featurese�cientlyJ. C. Clarke, S. Carlssony and A. ZissermanDepartment of Engineering Science, University of Oxford,Parks Road, Oxford, OX1 3PJ, UKyDept. of Numerical Analysis and Computing Science,Royal Institute of Technology, S - 100 44 Stockholm, Swedenemail: [johnc, az]@robots.oxford.ac.uk, stefanc@bion.kth.se �AbstractAn e�cient method for detecting and tracking linear features in im-ages is described. This novel algorithm combines a sparse sampling ofthe image data with a RANSAC grouper, and is particularly suited forframe-rate vision. The detector is tunable for both the scale and orien-tation of the desired line segments. Experimental results demonstratefast, robust and accurate feature detection and tracking.1 IntroductionThe detection of lines in an image has a long tradition in the computer visionliterature. Methods generally begin with a detection of edgels in the image, andthen grouping these edgels into lines. A Hough transform approach is often used(eg. [10]). An alternative is grouping the edgels into chains and segmenting thechains into piecewise linear segments eg. by using a \worm", or by a (recursive)orthogonal regression based �t and test cycle (see [3, 8, 12] for a surveys of previ-ous approaches). Once line segments are detected, there are very e�cient trackingtechniques available | snakes | for following the feature through an image se-quence [2, 11]. The line segment is tracked by a small number of linear searchesnormal to the line at its predicted position.This paper describes a new method for line segment detection based on ane�cient hypothesise and test algorithm. The method is used to detect lines atframe rate on a standard workstation | i.e. it is fast enough to be applied to areasonably sized region of an image in the 20ms available to process a single �eld.The lines are then used as visual primitives for tracking, again at frame rate. Themain advance is that scale and orientation selectivity are built into the detectionprocess from the start. A consequence is that the detector is \blind" to short linesegments, for example, but this is an advantage because we are only interested inline segments which will be suitable for tracking. It is also important to note that�Thanks are due to Carnegie Mellon University for the use of images from the VASC database.Funding for this work was provided by the EPSRC and EU ACTS Project VANGUARD.
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dFigure 1: The RANSAC approach to line �tting in the face of both statistical noiseand gross outliers. A number of random samples (here the points fa; bg and fc; dg)are chosen and used to hypothesise lines. Points close enough to the hypotheticallines (within the dotted boundaries) are considered to support the hypothesis. Ahypothesis with enough support is accepted { here line < ab > receives 12 votes,while < cd > only has 3. The outliers are denoted by open circles.one does not need to detect the entire length of a line segment in order to trackit, instead this information is best obtained while tracking.The next section describes the detection of line segments, while section 3 dis-cusses the tracking of the line segments, and the paper concludes with a criticalevaluation of the algorithm.2 Linear feature detectionThe e�cient detection of features implicitly demands that one not process everypixel in an image. This section describes a line detector which uses a sparse sam-pling of the image data to �nd candidate points (edgels) for lines, and then uses aRANSAC grouper to �nd line segments consistent with those edgels. RANSAC [9]is a robust �tting algorithm which is �nding an increasing number of applicationsin computer vision, for example in computing the fundamental matrix betweentwo views [7, 14], and for amalgamating line segments [13]. To �t a line passingthrough a set of points, the RANSAC approach is to randomly select two points(a sample), �t a line through these, and measure the support for the line. Thesupport is the number of points that lie within a threshold distance of the line (theinliers). This process is repeated over a number of samples, and the line with themost support is then chosen. The line �t can then be improved by an orthogonalregression �t to the inliers. If there are several lines present, then there will beseveral lines with signi�cant support. The algorithm is illustrated schematicallyin �gure 1.Our algorithm trades increased work in grouping for reduced work in edgeldetection by only looking for edgels on a coarse grid of image pixels (every 5throw and column say) and then using RANSAC to �nd lines through these edgels.
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Because edgel detection is the dominant component this tradeo� results in a netgain in speed.2.1 The algorithmFinding the edgels1. A small region (typically 40�40 pixels) of the image is divided into a rectan-gular grid of widely spaced (5 pixels apart) horizontal and vertical scanlines.2. Each scanline is convolved with a derivative of Gaussian (here taken as0:0625� [�3;�5; 0; 5; 3]) to estimate the component of the intensity gradientalong the scanline.3. Any local maxima of the intensity gradient stronger than a threshold (typi-cally 30/256 pixel value) are considered edgels.4. The edgels' positions are estimated to sub-pixel precision by taking the max-ima of quadratics �tted to each edgel and its two neighbours.5. The orientation of each edgel is estimated by calculating the intensity gra-dient normal to the scanline at that point and then taking arctan(gy=gx)where gx and gy are the two components of the gradient.Using RANSAC to �nd straight lines1. Two randomly chosen edgels, whose orientations are compatible (within67:5�) with the line joining them, are used to hypothesise a line.2. The number of edgels supporting each putative line are counted. To beconsidered part of a line an edgel must lie close to it (within 0.1 - 0.25pixels) and have an orientation compatible (within 67:5�) with the line.3. Steps 1 and 2 are repeated (typically 25 times) allowing the dominant lineto be found.4. Lines with enough support (at least 4-6 votes) are deemed present in theimage, their supporting edgels removed from the set and steps 1 to 3 repeateduntil all such lines have been found.5. The detected lines are re-estimated by an orthogonal regression using alltheir supporting edgels for increased accuracy.2.2 Experimental resultsThis section presents the results from some tests of the new algorithm on imagesfrom the VASC database at Carnegie Mellon University and from images acquiredin real time by a Sun Ultrasparc computer equipped with an S2200 framegrabber.Figure 2 shows the results of applying the algorithm to grey level images fromthe VASC database. In each image the detector has been applied sequentially toa series of 40 � 40 pixel windows tiling the image since this is the size of region
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Figure 2: Images of a parking lot and kitchen scene from the VASC database. Thedetected line segments have been superimposed on the images. Long lines in theimages have been detected as series of short line segments because the line detectorhas been applied to a series of 40� 40 pixel windows to duplicate the e�ect of realtime processing. Section 3 explains how the entire extent of the line is recoveredduring tracking.typically processed in real time (20 ms). Notice that the dense texture of the hedgein the parking lot image gives rise to only two false detections. The boundariesof the shadows in the kitchen scene are not detected as lines because they are tooblurred and so the maximal gradient edgels do not lie on a line to the requiredtolerance.The probabilities of correctly and falsely identifying a line were estimated using10000 images of two scenes: the �rst scene consisted of a horizontal black/whiteboundary, and the second a blank sheet of paper. Each of the 10000 images of eachscene was corrupted by the unavoidable pixel noise (� � 3=256 pixel value) in thecamera and framegrabber. In 76 of the 10000 images of a horizontal black/whiteboundary the detector failed to �nd the line thus giving the probability of detectinga line PD = 0:9924. This failure rate is similar to that of other feature detectorsand is largely due to the random displacement of the edgels. No lines were detectedin the 10000 images of a blank sheet of paper, as expected (indeed, the thresholdshad to be relaxed to: 3/256 pixel intensity di�erence, minimum of 4 edgels on aline, edgels within 2.0 pixels of the line, before any false detections occurred).Given that a line has been detected the uncertainty in its estimated parametersshould be quanti�ed. To give an example of the accuracy of the line detector thecovariance matrix of the parameters of the horizontal line discussed above wascalculated. The line is represented as f(x; y)j(� sin �)x + (cos �)y + d = 0g withthe average parameters of the 9924 samples (�; d) = (2:34�; 192:43). The measuredcovariance matrix for (�; d) was:� 8:94e� 3 �5:73e� 2�5:73e� 2 7:87e� 1 �The values are all very small - the variance of the orientation of the line is lessthan one hundredth of a degree.
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Figure 3: E�ciently constraining the orientation of detected lines. Edgels (circles)are detected on widely spaced scanlines (dotted lines) all aligned normal to thepreferred line orientation. As before two edgels fa; bg are used to hypothesise aline whose supporting edgels are counted, and only those hypotheses with enoughsupport are accepted.Finally comparing the detector to a standard algorithm performing orthogonalregression �tting lines to edgels detected using Canny's [5] operator showed thatthe new algorithm runs up to 8 times faster when applied to the same image regionand using similar parameters.2.3 Oriented lines - a steerable detectorFigure 3 shows how, by aligning the scanlines perpendicular to the preferred ori-entation of detected lines, the method can ignore unwanted lines with no loss ofe�ciency. The pixels on the (usually diagonal) scanlines can be found easily us-ing Bresenham's line plotting algorithm [4]. The edgels on the scanlines are thenprocessed by the RANSAC grouper as in section 2.1 to extract the line segments.This has much in common with the edge search of a template or snake basedtracker although the aim here is to identify line segments when the position andeven existence of such lines is unknown a priori and must be determined from theimage alone, making the use of a robust grouper essential.The line detector's directional abilities are demonstrated in �gure 4. The imageis a low resolution aerial view of highrise buildings in Pittsburgh. The ability todetect horizontal and vertical lines is shown (although the detector can be steeredto any orientation).
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(a) (b) (c)Figure 4: An aerial view of Pittsburgh from the VASC database. Images (a),(b) and (c) show the results of isotropic, horizontal and vertical line detectionrespectively.3 Tracking lines3.1 Predicting a line's positionThis section describes how to predict the position of a line in a third view giventwo previous views and the projection matrices for each view.Let the image of a world pointX be given by x = PX, where, using homogenouscoordinates, x is a 3 vector, X a 4 vector, and P the 3� 4 projection matrix. Nowconsider a line l in the image. All points x on the line satisfy l � x = 0, and so0 = l>x = l>PX =�>X (1)where �> = l>P is the representation of the plane in the world de�ned by theoptical centre and the image line l. Provided that the planes derived from twoviews are distinct (i.e. they are not epipolar planes) we are able to �nd the positionof the line in the world by intersecting those planes. If more than two views areavailable they can all be used in a least squares minimisation to obtain an improvedestimate of the line's position.In practice one deals with line segments while tracking, and so the position ofits endpoints in the world must be known. These may be found by backprojectingrays from the endpoints of the line in the image and taking the intersection withthe already known position of the line in the world. Since lines do not necessarilyintersect in three dimensions the point closest to the backprojected ray may betaken as the endpoint. The position of the line in subsequent images is easilyfound by projecting its endpoints into the new images.3.2 Detecting linesDetection of new line segments: Lines are detected by applying either theisotropic or oriented detector to a randomly chosen small region of the image. Ifthe oriented detector is used the preferred direction for a line is normal to theoptical 
ow in that region.
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Predicting lines' positions: Line segments are tracked until they leave the im-age, or they out-manoeuvre the tracker. Structure based tracking can not be usedimmediately a line is detected, because at least two views are required. Insteadthe line segment is tracked using a constant velocity �lter until it has moved asmall distance in the image. This unguided tracking continues until the structurebased tracking can commence.Locating lines: Once the position of a line has been predicted an attempt canbe made to �nd it. As in snake tracking lines are located quickly by a number(typically 5-7) of short (20 pixels) transverse linear searches. Unlike the snakeapproach all the strong local maxima of the intensity gradient along the searchlines are used in a RANSAC optimisation to �nd a robust estimate of the true linesegment.Growing line segments: A transverse search is always attempted slightly be-yond the currently known extent of the line segment so that the true extent oflong lines can be iteratively built up while tracking.3.3 Experimental resultsThe line detector/tracker described here has been incorporated into an, originallycorner based, tracking system which performs motion segmentation. This systemruns on a Sun Ultrasparc equipped with an S2200 framegrabber. Details of theimplementation including the feature track life cycle, albeit using corners, can befound in [6].Figure 5 shows images taken ten seconds apart as the camera translates towardssome crayons and blocks. The tracked line segments are shown superimposed in�gure 6. Some mismatches and spurious lines are detected but they do not persistbecause the continued tracking imposes strong constraints on the world structureof features. Figure 7 shows how more than 60 lines are classi�ed as moving in amanner compatible with the camera motion and are tracked using equation 1, whilesimultaneously up to 20 lines are tracked using the unguided constant velocity �lteruntil they too can be tracked via their 3D structure.4 DiscussionThis paper has described an e�cient algorithm for detecting and tracking linesegments in images which is able to take advantage of all the constraints on thetask. The method has been shown to be fast, accurate and robust to image noisesuch as dense texture. The main features of the proposed algorithm are:Advantages:� It is extremely fast, being able to detect and track on the order of 100features at frame rate, further the true extent of the line segments is builtup continuously.� The detector is explicitly tunable for both the scale and orientation of thedesired line segments.
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0s 10s 20s
30s 40s 50s
60s 70s 80sFigure 5: The computer's view during the �rst 80 seconds of real time line track-ing. A camera mounted on an Adept industrial robot translates forward and downtowards some crayons and blocks. (Tracked line segments are superimposed in�gure 6.)Disadvantages� Because edgels are detected on a rectangular grid there is an inherent biasagainst diagonal line segments hence the line detection can not be madeperfectly isotropic.It is important for a feature tracker to be able to choose the orientation ofthe lines it detects because lines perpendicular to the direction of optical 
ow willconstrain the ego-motion most accurately. Similarly it is useful to ignore veryshort line segments that are not suitable for tracking.The RANSAC based detection scheme has here been utilised for line segments.A similar \scale tuned" approach could be used for conic detection. AlreadyRANSAC has been used to improve the e�ciency of tracking for both lines andconics when a model exists [1].
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0s 10s 20s
30s 40s 50s
60s 70s 80sFigure 6: Results from the �rst 80 seconds of real time line tracking. (The originalimages are given in �gure 5.) Features whose motion is believed to be consistentwith the camera's motion are superimposed on the images. Notice how the numberof features tracked increases with time. A few spurious features and matches dooccur, but they are quickly removed.References[1] M. Armstrong and A. Zisserman. Robust object tracking. In Proc. ACCV, 1995.[2] A. Blake, R. Curwen, and A. Zisserman. A framework for spatiotemporal con-trol in the tracking of visual contours. International Journal of Computer Vision,11(2):127{146, October 1993.[3] R.N. Bracewell. Two-dimensional imaging. Prentice-Hall International, London,1995.[4] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM SystemsJournal, 1965.[5] J.F. Canny. A computational approach to edge detection. IEEE Trans. PatternAnalysis and Machine Intelligence, 8(6):679{698, 1986.
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(b)Figure 7: The number of lines tracked in real time. The number of newly detectedline segments undergoing unguided tracking is shown in (a). The number of lineswhose motion is consistent with the camera's motion and so are being tracked usingtheir 3D structure is given in (b). As can be seen a total of over 50 lines can betracked at 50Hz.[6] J. C. Clarke and A. Zisserman. Detection and tracking of independent motion.Image and Vision Computing, 1996. to appear.[7] R. Deriche, Z. Zhang, Q.-T. Luong, and O. Faugeras. Robust recovery of the epipolargeometry for an uncalibrated stereo rig. In Proc. 3rd European Conf. on ComputerVision, Stockholm, volume 1, pages 567{576, May 1994.[8] O.D. Faugeras. Three-Dimensional Computer Vision. MIT Press, 1993.[9] M.A. Fischler and R.C. Bolles. Random sample concensus: A paradigm for model�tting with applications to image analysis and automated cartography. Comm.ACM, 24(6):381{395, 1981.[10] J. Illingworth and J. Kittler. A survey of e�cient Hough transform methods. InProc. 3rd Alvey Vision Conf., Cambridge, pages 319{326, 1987.[11] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In Proc.1st Int. Conf. on Computer Vision, pages 259{268, 1987.[12] V.S. Nalwa. A guided tour of computer vision. Addison-Wesley, Reading, Mas-sachusetts, 1993.[13] I. D. Reid and A. Zisserman. Goal-directed video metrology. In B. Buxton andR. Cipolla, editors, Proc. 4th European Conf. on Computer Vision, Cambridge,volume 2, pages 647{658, April 1996.[14] P. H. S. Torr and D. W. Murray. Stochastic motion clustering. In Proc. 3rd EuropeanConf. on Computer Vision, Stockholm, 1994.


