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Abstract

As research in computer vision has shifted from only processing sin-
gle, static images to the manipulation of video sequences, the concept
of action recognition has become important. Fundamental to under-
standing action 1s reasoning about time, in either an implicit or explicit
framework. In this paper I describe several specific examples of incor-
porating time into representations of action and how those representa-
tions are used to recognize actions. The approaches differ on whether
variation over time 1s considered a continuous mapping, a state-based
trajectory, or a qualitative, semantically labeled sequence. For two of
the domains — whole body actions and hand gestures — I described
the approaches in detail while two others — constrained semantic do-
mains (e.g. watching someone cooking) and labeling dynamic events
(e.g. American football) — are briefly mentioned.

1 Seeing Action

Understanding video sequences is different than conventional image understand-
ing in that one is interested in what is happening in a scene, as opposed to what
s in the scene. One might believe that attempting to describe what is happen-
ing in hundreds of images is not a viable research of goal given the difficulty of
understanding just one picture.

However, video understanding can be regarded as a way of providing more con-
straint in the interpretation of imagery. We require that the image interpretation
be plausible over time: extracted structure must obey the temporal constraints
of the domain. For example, if we are annotating an American football play, we
might be interested in tracking the quarterback. Unfortunately, current (even near
future) technology cannot see or track the quarterback in every frame. However,
assuming he never disappears from the field of play, we can “track” him as he
enters an amorphous blob and re-emerges six frames later. The program cannot
see him during this time, but it knows he’s there.

Understanding time can be either explicit, as in the above example, or implicit,
captured in the representation of action. One example that we will expand upon
later is our work in gesture recognition [2, 22]. In this work gesture is represented
either deterministically by an explicit sequence of states through which the hand
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must move, or probabilistically by a hidden Markov model. In both cases the
requirement that the interpretation be consistent with the temporal constraints of
the domain is guaranteed by matching the input data to learned representations
of action which are sensitive to time.

From our perspective, one of the future directions of computer vision lies in the
area of action understanding. In this paper I will detail two different approaches
to incorporating time into a representation of action and then causally perform-
ing recognition.!
temporal templates: a view-based, model-based description of image variation over
time. The second technique, applied to hand gesture understanding, develops a
state-based model of time captured in a probabilistic framework. Finally, in the
conclusion I will refer to additional work where knowledge about time and actions
is explicitly expressed in rules that are used by the system to interpret the imagery.

The first focuses on recognizing whole body motion by using

2 Recognizing motion: temporal templates

The lure of wireless interfaces (e.g. [11]) and interactive environments [9] has
heightened interest in understanding human actions. Recently a number of ap-
proaches have appeared attempting the full three-dimensional reconstruction of
the human form from image sequences, with the presumption that such informa-
tion would be useful and perhaps even necessary to understand the action taking
place (e.g. [6, 12, 19, 20]).

Consider, however, an extremely blurred sequence of action; a few frames on
one such example is shown in Figure 1. Even with almost no structure present
in each frame people can trivially recognize the action as someone sitting. Such
capabilities argue for recognizing action from the motion itself, as opposed to
first reconstructing a 3-dimensional model of a person, and then recognizing the
action of the model. The prior work in this area has addressed either periodic or
gross motion detection and recognition [17, 21, 24] or the understanding of facial
expressions [23, 1, 10].

In [4, 5] we propose a representation and recognition theory that decomposes
motion-based recognition into first describing where there is motion (the spatial
pattern) and then describing how the motion is moving. The basic idea is that we
project the temporal pattern of motion into a single, image-based representation
— a temporal template. This approach 1s a natural extension of Black and Yacoob’s
work on facial expression recognition[1].

2.1 Motion images

Consider the example of someone sitting, as shown in Figure 2a. The top row
contains key frames in a sitting sequence. The bottom row displays cumulative
binary motion images — to be described momentarily — computed from the start
frame to the corresponding frame above. As expected the sequence sweeps out a
particular region of the image; our claim is that the shape of that region can be
used to suggest both the action occurring and the viewing condition (angle).

1That is, the temporal segmentation and recognition tasks are performed simultaneously.
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Figure 1: Selected frames from video of someone performing an action. Even with

almost no structure present in each frame people can trivially recognize the action
as someone sitting.

We refer to these binary cumulative motion images as motion-energy images
(MEI). Let I(x,y,t) be an image sequence, and let D(z,y,?) be a binary image
sequence indicating regions of motion; for many applications image-differencing is
adequate to generate D. Then the MEI E.(z,y,1) is defined

T—1
ET($ayat) = U D($ayat - Z)
i=0

We note that the duration 7 is critical in defining the temporal extent of an
action. Fortunately, in the recognition section we derive a backward-looking (in
time) algorithm which can dynamically search over a range of 7.

In Figure 2b we display the MEIs of viewing a sitting action across 90°. In
[4] we exploited the smooth variation of motion over angle to compress the entire
view circle into a low order representation. Here we simply note that because of
the slow variation across angle, we only need to sample the view sphere coarsely
to recognize all directions.

To represent how motion is moving we enhance the MEI to form a motion-
history image (MHI). In an MHI, pixel intensity is a function of the motion history
at that point. For the results presented here we use a simple replacement and decay
operator:

r if D(z,y,t) =1
H-(z,y,t) =< max (0,H(x,y,t—1)—1)
otherwise

The result is a scalar-valued image where more recently moving pixels are brighter.
Examples of MHIs are presented in Figure 3. Note that unlike MEIs, the MHIs
are sensitive to direction of motion. Also note that the MHI can be generated by
thresholding the MEI above zero.

2.2 Matching temporal templates

To construct a recognition system, we need to define a matching algorithm for
the the MEI and the MHI. Because we are using an appearance-based approach,
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Figure 2: Example of someone sitting. (a) Top row contains key frames; bottom
row is cumulative motion images starting from Frame 0. (b) MEIs for each of 6
viewing directions;the smooth change implies only a coarse sampling of viewing
direction is necessary to recognize the action from all angles.

we must first define the desired invariants for the matching technique. As we are
interested in actions whose orientations (in the image plane) are relatively fixed
but which can occur anywhere in the image at arbitrary scale, we have selected a
technique which 1s scale and translation invariant.

We first collect training examples of each action from a variety of viewing
angles. Given a set of MEIs and MHIs for each view/action combination, we
compute statistical descriptions of the these images using moment-based features.
Our current choice are 7 Hu moments [13] which are known to yield reasonable
shape discrimination in a translation- and scale-invariant manner. For each view
of each action a statistical model (mean and covariance matrix) is generated for
both the MEI and MHI. To recognize an input action, a Mahalanobis distance is
calculated between the moment description of the input and each of the known
actions.

2.3 Real-time segmentation and recognition

The final element of performing recognition i1s the temporal segmentation and
matching. During the training phase we measure the minimum and maximum
duration that an action may take, 7, and 7,q,. However, if the test actions are
performed at varying speeds, we need to choose the right 7 for the computation
of the MEI and the MHI. Our current system uses a backward looking variable
time window. Because of the simple nature of the replacement operator we can
construct a highly efficient algorithm for approximating a search over a wide range

of T [5].
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crouch-down crouch-down MHI
Figure 3: Action moves along with their MHIs used in a real-time system

After computing the various MEIs and MHIs, we compute the Hu moments
for each image. We then check the Mahalanobis distance of the MEI parameters
against the known view/action pairs. Any action found to be within a threshold
distance of the input is tested for agreement of the MHI. If more than one action
is matched, we select the action with the smallest distance.

Currently the system recognizes 180° views of the actions sitting, arm waving,
and crouching (See Figure 3). Except for the head-on view of crouching and sitting
which appear quite similar in terms of motion descriptions, the system performs
well, rarely misclassifying the actions. However, because we are only using a small
number of actions it seems premature to present statistics of recognition rates.
The errors which do arise are mainly caused by problems with image differencing
and also due to our approximation of the temporal search window. Currently
we are developing a multi-camera approach which should increase robustness by
requiring both limited consistency across views and a good match from at least
one view.

The system runs at approximately 10 Hz using a color CCD camera connected
to a Silicon Graphics Indy. The images are digitized to a size of 160x120, Tpazr=19
(approximately 2 seconds), Tmin = 11 (approximately 1 second). The compari-
son operation is virtually no cost in terms of computational load, so adding more
actions does not affect the speed of the algorithm, only the accuracy of the recog-
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nition.

3 Discrete time and temporal states

Another domain which is amenable to view-based techniques is that of gesture
recognition. First, we note that gestures are embedded within communication. As
such, the gesturer typically orients the movements towards the recipient of the
gesture. Visual gestures are therefore viewpoini-dependent [8, 7]. Second, in the
space of motions allowed by the body’s degrees of freedom, there 1s a small subspace
that we use in the making of a gesture. Taken together, these observations argue
for a view-based approach in which only a small subspace of human motions is
represented.

How should a system model human motion to capture the constraints present
in the gestures? There may be no single set of features that makes explicit the
relationships that hold for a given gesture. In the case of hand gestures, for exam-
ple, the spatial configuration of the hand may be important (as in a point gesture,
when the observer must notice a particular pose of the hand), or alternatively,
the gross motion of the hand may be important (as in a friendly wave across the
quad). Quek [18] has observed that it is rare for both the pose and the position
of the hand to simultaneously change in a meaningful way during a gesture.

Recently we have presented an approach that represents gesture as a sequence
of states in a particular observation space [2]. We then extended that work and
developed a technique for learning visual behaviors that 1) incorporates the no-
tion of multiple models — multiple ways of describing a set of sensor data[l15]; 2)
makes explicit the idea that a given phase of a gesture is constrained to be within
some small subspace of possible human motions; and 3) represents time as a prob-
abilistic trajectory through states [22]. The basic idea is that the different models
need to approximate the (small) subspace associated with a particular state and
membership in a state is determined by how well the state models can represent
the current observation. The parsing of the entire gesture is accomplished by find-
ing a likely sequence of states given the memberships and the learned transition
probabilities between the states.

The details of the techniques are presented in [2, 22]. The approach is based
upon state models that define a residual — how well a given model can represent
the current sensor input. We then embed this residual-based technique within a
Hidden Markov Model framework; the HMMs represent the temporal aspect of
the gestures in a probabilistic manner and provide an implicit form of dynamic
time warping for the recognition of gesture.

Here we illustrate the technique by way of two examples. Figure 4 — a wave
gesture — consists of a single model example but shows the use of the HMM.
In this case, the parameters associated with the model of each state are simply a
number of the top eigenimages that account for most of the variance of the training
images (as indicated by the eigenvalues). The input consists of 32 image sequences
of a waving hand, each about 25 frames (60 by 80 pixels, gray-scale) in length.

The recovered Markov model, the mean image at each state, and plots of
the memberships and residual for one training sequence are shown in Figure 4.
The recovered Markov model allows the symmetry of motion seen in the plot of
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Figure 4: A wave gesture. The recovered Markov model for all training sequences
at left shows the symmetry of the gesture. The mean image for each state is shown
in the middle. On the right is a plot of membership (solid line) and residual (dotted
line) for each state for one training sequence. The exact shape of the plots varies
in response to the variance and length of the sequence.

membership over an observation sequence. Some other observation sequences differ
in the extent of the wave motion; in these cases the state representing the hand
at its lowest or highest position in the frame is not used.

Our second example describes the position and configuration of a waving, point-
ing hand (Figure 5). In each frame of the training sequences, a 50 by 50 pixel image
of the hand was tracked and clipped from a larger image with a cluttered back-
ground. Foreground segmentation was accomplished using the known background.
The configuration C' of the hand is modeled by the eigenvector decomposition of
the 50 by 50 images. The position P of the hand is modeled by the location of
the tracked hand within the larger image. The recovered Markov model is similar
to that of the waving hand in the previous example except now there are two
components of the model of each state. As before, this gesture is recognized if a
highly probable parse can be generated by the HMM.

The variance of each feature indicates the importance of the feature in describ-
ing the gesture. In this example both the position and configuration of the hand
was relevant in describing the gesture. Had the location of the hand varied greatly
in the training set, the high variance of the position representation would have in-
dicated that position was not important in describing the gesture. The important
point here i1s that each state defines the important models associated with that
phase of the gesture.

4 Reasoning about seeing action

Finally, I mention some current work that makes time explicit. One research
effort in our lab 1s video annotation, in particular labeling American football plays.
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Figure 5: (a) Four representative frames (ordered left to right) are shown from
one training sequence. (b) The mean location of the tracked hand in the larger
image is shown on the left. The mean image for each state is shown in the middle.
On the right is a plot of membership (solid line), configuration residual (dotted
line), and the position residual (dash-dotted line) for each state for one training
sequence.

In [14] we developed closed-world tracking, a technique that reasons about local
contexts at a semantic level (e.g. “grass”, “players”, “field lines”) to build robust
templates to track players . We are currently developing context sensitive methods
for recognizing the plays themselves. The basic 1dea is to represent an action as a
labeled sequence of events. Borrowing from the object recognition literature, the
iterative approach is to use some visual features to reduce the space of possible
plays, which in turn constrain the events that need be detected, which further
constrain the solution. For more details see:
http://www-white.media.mit.edu/vismod/demos/football/football.html

A different focus is taken in [16, 3] where we introduce SmartCams— cameraman-
less cameras — that respond to a director’s requests while filming a cooking show..
Such cameras perform inverse video-annotation: given some symbolic description
(“close-up chef”) the system needs to generate the correct image. One key ele-
ment of the system is that it maintains an approximate world model to control the
selection of view-based vision routines, and that selection process is controlled by
rules that explicitly model time and action. Actions are represented in a frame-
based system as a sequence of activities, and each activity is known to have visual
correlates. The system uses simple inferencing mechanisms to derive the current
visual primitives to exploit given knowledge about the current action; likewise,
detection of visual primitives validates that an expected action is occurring. For
more details and a demonstration see:
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http://www-white.media.mit.edu/vismod/demos/smartcams/smartcams.html

5 The future

Computer vision has just begun to consider action. Yet, the vast majority of
images recorded are frames of video sequences. For computer vision to begin to
understand the images in our environment, or to understand the environment it-
self, 1t 1s clear that understanding action and behavior is fundamental. Computer
vision has developed numerous ways of representing a cup (Euclidean solids, su-
perquadrics, spline surfaces, particles); how many ways do we have to represent

throwing a baseball? Or even getting a wicket?

Acknowledgment: Thanks to the entire HLV lab and in particular Jim Davis, Andy
Wilson, Stephen Intille and Claudio Pinhanez who did most of the labor reported here.
The work presented here is supported in part by a research grant from LG FElectronics
and by ORD contract 94-F133400-000.

References

[1] Black, M. and Y. Yacoob. Tracking and recognizing rigid and non-rigid facial
motion using local parametric models of image motion. In ICCV, 1995.

[2] A.F.Bobickand A. D. Wilson. A state-based technique for the summarization
and recognition of gesture. Proc. Int. Conf. Comp. Vis., 1995.

[3] Aaron Bobick and Claudio Pinhanez. Using approximate models as source
of contextual information for vision processing. In Proc. of the ICCV’95
Workshop on Context-Based Vision, pages 13-21, Cambridge, Massachusetts,
July 1995.

[4] Bobick, A. and J. Davis. An appearance-based representation of action. In

ICPR, August 1996.

[5] Bobick, A. and J. Davis. Real-time recognition of activity using temporal
templates. In Submitted to WACYV, December 1996.

[6] Campbell, L. and A. Bobick. Recognition of human body motion using phase
space constraints. In ICCV, 1995.

[7] Y. Cui and J. Weng. Learning-based hand sign recognition. In Proc. of the
Intl. Workshop on Automatic Face- and Gesture-Recognition, Zurich, 1995.

[8] T.J. Darrell and A.P. Pentland. Space-time gestures. Proc. Comp. Vis. and
Pattern Rec., pages 335-340, 1993.

[9] Darrell, T., P. Maes, B. Blumberg, and A. Pentland. A novel environment for
situated vision and behavior. In IEEE Wkshp. for Visual Behaviors (CVPR-
94), 1994.

[10] Essa, I. and S. Pentland. Facial expression recognition using a dynamic model
and motion energy. In ICCV, 1995.



British Machine Vision Conference

[11] Freeman, W. Orientation histogram for hand gesture recognition. In Int’l
Workshop on Automatic Face- and Gesture-Recognition, 1995.

[12] Hogg, D. Model-based vision: a paradigm to see a walking person. Image
and Vision Computing, 1(1), 1983.

[13] Hu, M. Visual pattern recognition by moment invariants. IRE Trans. Infor-
mation Theory, IT-8(2), 1962.

[14] S.S.Intille and A.F. Bobick. Closed-world tracking. In Proc. Int. Conf. Comp.
Vis., June 1995.

[15] R. W. Picard and T. P. Minka. Vision texture for annotation. Journal of
Multimedia Systems, 3:3-14, 1995.

[16] Claudio S. Pinhanez and Aaron F. Bobick. Approximate world models: Incor-
porating qualitative and linguistic information into vision systems. To appear

in AAAT96, 1996.

[17] Polana, R. and R. Nelson. Low level recognition of human motion. In JEEE
Workshop on Non-rigid and Articulated Motion, 1994.

[18] F. Quek. Hand gesture interface for human-machine interaction. In Proc. of
Virtual Reality Systems, volume Fall, 1993.

[19] Rehg, J. and T. Kanade. Model-based tracking of self-occluding articulated
objects. In ICCV, 1995.

[20] Rohr, K. Towards model-based recognition of human movements in image
sequences. CVGIP, Image Understanding, 59(1), 1994.

[21] Shavit, E. and A. Jepson. Motion understanding using phase portraits. In
IJCAI Workshop: Looking at People, 1995.

[22] A. D. Wilson and A. F. Bobick. Learning visual behavior for gesture analysis.
In Proc. IEEE Int’l. Symp. on Comp. Vis., Coral Gables, Florida, November
1995.

[23] Yacoob, Y. and L. Davis. Computing spatio-temporal representations of hu-

man faces. In CVPR, 1994.

[24] Yamato, J., J. Ohya, and K. Ishii. Recognizing human action in time sequen-
tial images using hidden markov models. In CVPR, 1992.



