
Computers Seeing ActionAaron F. BobickMIT Media Laboratory20 Ames StreetCambridge, MA 02139 USAbobick@media.mit.eduhttp://www.media.mit.edu/~bobickAbstractAs research in computer vision has shifted from only processing sin-gle, static images to the manipulation of video sequences, the conceptof action recognition has become important. Fundamental to under-standing action is reasoning about time, in either an implicit or explicitframework. In this paper I describe several speci�c examples of incor-porating time into representations of action and how those representa-tions are used to recognize actions. The approaches di�er on whethervariation over time is considered a continuous mapping, a state-basedtrajectory, or a qualitative, semantically labeled sequence. For two ofthe domains | whole body actions and hand gestures | I describedthe approaches in detail while two others | constrained semantic do-mains (e.g. watching someone cooking) and labeling dynamic events(e.g. American football) | are brie
y mentioned.1 Seeing ActionUnderstanding video sequences is di�erent than conventional image understand-ing in that one is interested in what is happening in a scene, as opposed to whatis in the scene. One might believe that attempting to describe what is happen-ing in hundreds of images is not a viable research of goal given the di�culty ofunderstanding just one picture.However, video understanding can be regarded as a way of providingmore con-straint in the interpretation of imagery. We require that the image interpretationbe plausible over time: extracted structure must obey the temporal constraintsof the domain. For example, if we are annotating an American football play, wemight be interested in tracking the quarterback. Unfortunately, current (even nearfuture) technology cannot see or track the quarterback in every frame. However,assuming he never disappears from the �eld of play, we can \track" him as heenters an amorphous blob and re-emerges six frames later. The program cannotsee him during this time, but it knows he's there.Understanding time can be either explicit, as in the above example, or implicit,captured in the representation of action. One example that we will expand uponlater is our work in gesture recognition [2, 22]. In this work gesture is representedeither deterministically by an explicit sequence of states through which the hand
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British Machine Vision Conferencemust move, or probabilistically by a hidden Markov model. In both cases therequirement that the interpretation be consistent with the temporal constraints ofthe domain is guaranteed by matching the input data to learned representationsof action which are sensitive to time.From our perspective, one of the future directions of computer vision lies in thearea of action understanding. In this paper I will detail two di�erent approachesto incorporating time into a representation of action and then causally perform-ing recognition.1 The �rst focuses on recognizing whole body motion by usingtemporal templates: a view-based, model-based description of image variation overtime. The second technique, applied to hand gesture understanding, develops astate-based model of time captured in a probabilistic framework. Finally, in theconclusion I will refer to additional work where knowledge about time and actionsis explicitly expressed in rules that are used by the system to interpret the imagery.2 Recognizing motion: temporal templatesThe lure of wireless interfaces (e.g. [11]) and interactive environments [9] hasheightened interest in understanding human actions. Recently a number of ap-proaches have appeared attempting the full three-dimensional reconstruction ofthe human form from image sequences, with the presumption that such informa-tion would be useful and perhaps even necessary to understand the action takingplace (e.g. [6, 12, 19, 20]).Consider, however, an extremely blurred sequence of action; a few frames onone such example is shown in Figure 1. Even with almost no structure presentin each frame people can trivially recognize the action as someone sitting. Suchcapabilities argue for recognizing action from the motion itself, as opposed to�rst reconstructing a 3-dimensional model of a person, and then recognizing theaction of the model. The prior work in this area has addressed either periodic orgross motion detection and recognition [17, 21, 24] or the understanding of facialexpressions [23, 1, 10].In [4, 5] we propose a representation and recognition theory that decomposesmotion-based recognition into �rst describing where there is motion (the spatialpattern) and then describing how the motion is moving. The basic idea is that weproject the temporal pattern of motion into a single, image-based representation| a temporal template. This approach is a natural extension of Black and Yacoob'swork on facial expression recognition[1].2.1 Motion imagesConsider the example of someone sitting, as shown in Figure 2a. The top rowcontains key frames in a sitting sequence. The bottom row displays cumulativebinary motion images | to be described momentarily | computed from the startframe to the corresponding frame above. As expected the sequence sweeps out aparticular region of the image; our claim is that the shape of that region can beused to suggest both the action occurring and the viewing condition (angle).1That is, the temporal segmentation and recognition tasks are performed simultaneously.
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Frame 5 15 25 35Figure 1: Selected frames from video of someone performing an action. Even withalmost no structure present in each frame people can trivially recognize the actionas someone sitting.We refer to these binary cumulative motion images as motion-energy images(MEI). Let I(x; y; t) be an image sequence, and let D(x; y; t) be a binary imagesequence indicating regions of motion; for many applications image-di�erencing isadequate to generate D. Then the MEI E� (x; y; t) is de�nedE� (x; y; t) = ��1[i=0D(x; y; t � i)We note that the duration � is critical in de�ning the temporal extent of anaction. Fortunately, in the recognition section we derive a backward-looking (intime) algorithm which can dynamically search over a range of � .In Figure 2b we display the MEIs of viewing a sitting action across 90�. In[4] we exploited the smooth variation of motion over angle to compress the entireview circle into a low order representation. Here we simply note that because ofthe slow variation across angle, we only need to sample the view sphere coarselyto recognize all directions.To represent how motion is moving we enhance the MEI to form a motion-history image (MHI). In an MHI, pixel intensity is a function of the motion historyat that point. For the results presented here we use a simple replacement and decayoperator: H� (x; y; t) = 8<: � if D(x; y; t) = 1max (0;H(x; y; t� 1)� 1)otherwiseThe result is a scalar-valued image where more recently moving pixels are brighter.Examples of MHIs are presented in Figure 3. Note that unlike MEIs, the MHIsare sensitive to direction of motion. Also note that the MHI can be generated bythresholding the MEI above zero.2.2 Matching temporal templatesTo construct a recognition system, we need to de�ne a matching algorithm forthe the MEI and the MHI. Because we are using an appearance-based approach,
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Frame 0 20 40 0� 20� 40�50� 70� 90�(a) (b)Figure 2: Example of someone sitting. (a) Top row contains key frames; bottomrow is cumulative motion images starting from Frame 0. (b) MEIs for each of 6viewing directions;the smooth change implies only a coarse sampling of viewingdirection is necessary to recognize the action from all angles.we must �rst de�ne the desired invariants for the matching technique. As we areinterested in actions whose orientations (in the image plane) are relatively �xedbut which can occur anywhere in the image at arbitrary scale, we have selected atechnique which is scale and translation invariant.We �rst collect training examples of each action from a variety of viewingangles. Given a set of MEIs and MHIs for each view/action combination, wecompute statistical descriptions of the these images using moment-based features.Our current choice are 7 Hu moments [13] which are known to yield reasonableshape discrimination in a translation- and scale-invariant manner. For each viewof each action a statistical model (mean and covariance matrix) is generated forboth the MEI and MHI. To recognize an input action, a Mahalanobis distance iscalculated between the moment description of the input and each of the knownactions.2.3 Real-time segmentation and recognitionThe �nal element of performing recognition is the temporal segmentation andmatching. During the training phase we measure the minimum and maximumduration that an action may take, �min and �max. However, if the test actions areperformed at varying speeds, we need to choose the right � for the computationof the MEI and the MHI. Our current system uses a backward looking variabletime window. Because of the simple nature of the replacement operator we canconstruct a highly e�cient algorithm for approximating a search over a wide rangeof � [5].
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sit-down sit-down MHIarms-wave arms-wave MHIcrouch-down crouch-down MHIFigure 3: Action moves along with their MHIs used in a real-time systemAfter computing the various MEIs and MHIs, we compute the Hu momentsfor each image. We then check the Mahalanobis distance of the MEI parametersagainst the known view/action pairs. Any action found to be within a thresholddistance of the input is tested for agreement of the MHI. If more than one actionis matched, we select the action with the smallest distance.Currently the system recognizes 180� views of the actions sitting, arm waving,and crouching (See Figure 3). Except for the head-on view of crouching and sittingwhich appear quite similar in terms of motion descriptions, the system performswell, rarely misclassifying the actions. However, because we are only using a smallnumber of actions it seems premature to present statistics of recognition rates.The errors which do arise are mainly caused by problems with image di�erencingand also due to our approximation of the temporal search window. Currentlywe are developing a multi-camera approach which should increase robustness byrequiring both limited consistency across views and a good match from at leastone view.The system runs at approximately 10 Hz using a color CCD camera connectedto a Silicon Graphics Indy. The images are digitized to a size of 160x120, �max=19(approximately 2 seconds), �min = 11 (approximately 1 second). The compari-son operation is virtually no cost in terms of computational load, so adding moreactions does not a�ect the speed of the algorithm, only the accuracy of the recog-



British Machine Vision Conferencenition.3 Discrete time and temporal statesAnother domain which is amenable to view-based techniques is that of gesturerecognition. First, we note that gestures are embedded within communication. Assuch, the gesturer typically orients the movements towards the recipient of thegesture. Visual gestures are therefore viewpoint-dependent [8, 7]. Second, in thespace of motions allowed by the body's degrees of freedom, there is a small subspacethat we use in the making of a gesture. Taken together, these observations arguefor a view-based approach in which only a small subspace of human motions isrepresented.How should a system model human motion to capture the constraints presentin the gestures? There may be no single set of features that makes explicit therelationships that hold for a given gesture. In the case of hand gestures, for exam-ple, the spatial con�guration of the hand may be important (as in a point gesture,when the observer must notice a particular pose of the hand), or alternatively,the gross motion of the hand may be important (as in a friendly wave across thequad). Quek [18] has observed that it is rare for both the pose and the positionof the hand to simultaneously change in a meaningful way during a gesture.Recently we have presented an approach that represents gesture as a sequenceof states in a particular observation space [2]. We then extended that work anddeveloped a technique for learning visual behaviors that 1) incorporates the no-tion of multiple models | multiple ways of describing a set of sensor data[15]; 2)makes explicit the idea that a given phase of a gesture is constrained to be withinsome small subspace of possible human motions; and 3) represents time as a prob-abilistic trajectory through states [22]. The basic idea is that the di�erent modelsneed to approximate the (small) subspace associated with a particular state andmembership in a state is determined by how well the state models can representthe current observation. The parsing of the entire gesture is accomplished by �nd-ing a likely sequence of states given the memberships and the learned transitionprobabilities between the states.The details of the techniques are presented in [2, 22]. The approach is basedupon state models that de�ne a residual | how well a given model can representthe current sensor input. We then embed this residual-based technique within aHidden Markov Model framework; the HMMs represent the temporal aspect ofthe gestures in a probabilistic manner and provide an implicit form of dynamictime warping for the recognition of gesture.Here we illustrate the technique by way of two examples. Figure 4 | a wavegesture | consists of a single model example but shows the use of the HMM.In this case, the parameters associated with the model of each state are simply anumber of the top eigenimages that account for most of the variance of the trainingimages (as indicated by the eigenvalues). The input consists of 32 image sequencesof a waving hand, each about 25 frames (60 by 80 pixels, gray-scale) in length.The recovered Markov model, the mean image at each state, and plots ofthe memberships and residual for one training sequence are shown in Figure 4.The recovered Markov model allows the symmetry of motion seen in the plot of
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Figure 4: A wave gesture. The recovered Markov model for all training sequencesat left shows the symmetry of the gesture. The mean image for each state is shownin the middle. On the right is a plot of membership (solid line) and residual (dottedline) for each state for one training sequence. The exact shape of the plots variesin response to the variance and length of the sequence.membership over an observation sequence. Some other observation sequences di�erin the extent of the wave motion; in these cases the state representing the handat its lowest or highest position in the frame is not used.Our second example describes the position and con�guration of a waving, point-ing hand (Figure 5). In each frame of the training sequences, a 50 by 50 pixel imageof the hand was tracked and clipped from a larger image with a cluttered back-ground. Foreground segmentation was accomplished using the known background.The con�guration C of the hand is modeled by the eigenvector decomposition ofthe 50 by 50 images. The position P of the hand is modeled by the location ofthe tracked hand within the larger image. The recovered Markov model is similarto that of the waving hand in the previous example except now there are twocomponents of the model of each state. As before, this gesture is recognized if ahighly probable parse can be generated by the HMM.The variance of each feature indicates the importance of the feature in describ-ing the gesture. In this example both the position and con�guration of the handwas relevant in describing the gesture. Had the location of the hand varied greatlyin the training set, the high variance of the position representation would have in-dicated that position was not important in describing the gesture. The importantpoint here is that each state de�nes the important models associated with thatphase of the gesture.4 Reasoning about seeing actionFinally, I mention some current work that makes time explicit. One researche�ort in our lab is video annotation, in particular labeling American football plays.
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Figure 5: (a) Four representative frames (ordered left to right) are shown fromone training sequence. (b) The mean location of the tracked hand in the largerimage is shown on the left. The mean image for each state is shown in the middle.On the right is a plot of membership (solid line), con�guration residual (dottedline), and the position residual (dash-dotted line) for each state for one trainingsequence.In [14] we developed closed-world tracking, a technique that reasons about localcontexts at a semantic level (e.g. \grass", \players", \�eld lines") to build robusttemplates to track players . We are currently developing context sensitive methodsfor recognizing the plays themselves. The basic idea is to represent an action as alabeled sequence of events. Borrowing from the object recognition literature, theiterative approach is to use some visual features to reduce the space of possibleplays, which in turn constrain the events that need be detected, which furtherconstrain the solution. For more details see:http://www-white.media.mit.edu/vismod/demos/football/football.htmlA di�erent focus is taken in [16, 3] where we introduce SmartCams|cameraman-less cameras | that respond to a director's requests while �lming a cooking show..Such cameras perform inverse video-annotation: given some symbolic description(\close-up chef") the system needs to generate the correct image. One key ele-ment of the system is that it maintains an approximate world model to control theselection of view-based vision routines, and that selection process is controlled byrules that explicitly model time and action. Actions are represented in a frame-based system as a sequence of activities, and each activity is known to have visualcorrelates. The system uses simple inferencing mechanisms to derive the currentvisual primitives to exploit given knowledge about the current action; likewise,detection of visual primitives validates that an expected action is occurring. Formore details and a demonstration see:
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