
Independent 3D Motion DetectionThrough Robust Regressionin Depth LayersAntonis A. Argyros, Manolis I.A. Lourakis,Panos E. Trahanias and Stelios C. OrphanoudakisInstitute of Computer Science, FORTHPO Box 1385, Heraklion, Crete 711-10, GreeceandComputer Science Department, University of CretePO Box 1470, Heraklion, Crete 714-09, Greecefargyros, lourakis, trahania, orphanoug@ics.forth.grAbstractThis paper presents a novel method for the detection of objects thatmove independently of the observer in a 3D dynamic environment. In-dependent 3D motion detection is formulated as a problem of robustregression applied to visual input acquired by a binocular, rigidly mov-ing observer. The qualitative analysis of images acquired by a parallelstereo con�guration yields a segmentation of a scene into depth lay-ers. A depth layer consists of points of the 3D space for which depthvariations are small compared to the distance from the observer. Ro-bust regression is applied to each depth layer in order to segment thelatter into coherently moving regions. Finally, a combination stage isapplied across all layers in order to come up with an integrated viewof independent motion in the whole 3D scene. In contrast to otherexisting approaches for independent motion detection which are basedon the ill-posed problem of optical 
ow computation, the proposedmethod relies on normal 
ow �elds for both stereo and motion pro-cessing. Experimental results show the e�ectiveness and robustness ofthe proposed scheme, which is capable of discriminating independent3D motion in scenes with large depth variations.1 IntroductionThe visual �eld of a moving observer who is equipped with visual sensors, appearsto be moving in a speci�c manner, depending on the observer's egomotion and thestructure of the viewed scene. The problem of independent 3D motion detectioncan be de�ned as the problem of locating objects that move independently of theobserver in his �eld of view. The ability to detect independent 3D motion is veryimportant for an observer interacting with a dynamic environment. It is known
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[1] that independent motion detection is one of the basic visual competences ofmost of the biological organisms possessing the sense of vision.Most of the research e�orts towards independent motion detection depend onthe accurate computation of the optical 
ow �eld. Jain [2] has considered theproblem of independent 3D motion detection by an observer pursuing transla-tional motion. In addition to imposing constraints on egomotion, knowledge ofthe direction of translation is required. Thompson [3] derives various principlesfor detecting independent motion when certain aspects of the egomotion or of thescene structure are known. However, the practical exploitation of these principlesis made di�cult by the limiting assumptions they are based on. Bouthemy [4]views motion segmentation as a problem of statistical regularization using MarkovRandom Field models. The method proposed by Sharma [5] uses the spatiotem-poral derivatives of the image intensity function (the so called normal 
ow �eld),rather than optical 
ow. However, as in the case of [2], known translational ego-motion is hypothesized. Nelson [6] presents two methods for independent motiondetection which are also based on the normal 
ow �eld. The �rst of these methodsrequires a priori knowledge of egomotion parameters and assumes upper bounds onthe depth of the scene. The second method detects abrupt changes of independentmotion rather than independent motion itself.The method proposed in this paper makes use of the Least Median of Squares(LMedS) estimation technique [7]. Initially, images that are acquired by a binocu-lar observer are processed in order to separate the image points into depth layers;each depth layer corresponds to a set of points whose di�erence in depth is smallwith respect to their distance from the observer. At a second stage, LMedS isapplied to the motion data acquired by the observer at successive time instances.The application of LMedS results in the segmentation of each depth layer into mo-tion inliers and motion outliers. Motion inliers correspond to points moving with adominant set of 3D motion parameters. Motion outliers correspond to points thatdo not conform with the dominant motion parameters. Finally, a combinationstage is responsible for integrating the information collected through the variouslayers, yielding the 3D motion segmentation of the scene. Robust regression hasalso been employed in the past in the problem of motion segmentation [8]. How-ever, since no information on scene structure is used, the method presented in [8]is only applicable in cases of scenes forming a frontoparallel plane.In contrast to other approaches for motion segmentation that use optical 
ow[2, 3], the proposed method is based on normal 
ow. The ill-posed correspondenceproblem is not only avoided for the case of motion, but also for the case of stereowhich is treated as the hypothetical motion that would map the position of theleft camera to the position of the right camera. Again, normal 
ow is computedbetween the two frames of the stereo pair.The rest of the paper is organized as follows. Section 2 describes the input usedby the independent motion detection method. It also gives a brief introductionto robust regression and the LMedS estimation technique, which constitutes abasic building block of the approach. The independent motion detection methodis fully described in section 3. In section 4, experimental results are presented anddiscussed. Finally, section 5 summarizes the contributions of this work.
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2 PreliminariesIssues related to motion representation are brie
y reviewed here. The rationalebehind the choice to employ the normal 
ow �eld in all computations is given.Additionally, a discussion on robust regression and, more speci�cally, on LMedS isprovided, since the later comprises a basic building block of the described scheme.2.1 Visual motion representationConsider a 3D coordinate system positioned to the optical center (nodal point) of acamera. Suppose that the camera moves rigidly in its 3D static environment withtranslational motion ~t = (U; V;W ) and rotational motion ~! = (�; �; 
). Underperspective projection, the equations relating the 2D velocity (u; v) of an imagepoint p(x; y) to the 3D velocity of the projected 3D point P (X;Y; Z) are [9]:u = (�Uf + xW )Z + �xyf � ��x2f + f�+ 
y (1a)v = (�V f + yW )Z + ��y2f + f�� � xyf � 
x (1b)where f represents the focal length of the imaging system.Equations (1) describe the 2D motion �eld, which is the projection of the 3Dmotion of a point on the image plane. The motion �eld is a purely geometricalconcept and is not necessarily identical to the optical 
ow �eld [10], which describesthe apparent motion of brightness patterns resulting from the relative motionbetween an imaging system and its environment. Verri and Poggio [11] have shownthat the motion and optical 
ow �elds are identical in speci�c cases only. Even inthe cases that these two �elds are identical, the problem of optical 
ow estimationis ill-posed [12]. The problem of optical 
ow computation is often approachedusing regularization methods, which impose constraints on the solution. Suchconstraints are related to certain assumptions about the structure of the viewedscene. In practice - especially in the case of independent motion where motiondiscontinuities exist by de�nition - these assumptions are quite often violated,resulting in errors in optical 
ow estimation.For the above reasons, the proposed method does not rely on optical 
ow,rather on normal 
ow, i.e. the projection of optical 
ow on the direction of theintensity gradient. In order to compute the normal 
ow �eld, a sequence of im-ages is modeled as a continuous irradiance function I(x; y; t) of two spatial (x; y)and one temporal (t) variables. Assuming that irradiance is conserved betweentwo consecutive frames, the well known optical 
ow constraint equation, originallydeveloped by Horn and Schunk [10], can be derived:(Ix; Iy) � (u; v) = �It (2)where, Ix, Iy and It are the spatial and temporal partial derivatives of the im-age intensity function, respectively, and \�" denotes dot product. Equation (2),facilitates the computation of the normal 
ow �eld. The latter is not necessarilyidentical to the normal motion �eld (the projection of the motion �eld along the
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gradient direction), in the same way that the optical 
ow is not necessarily iden-tical to the motion �eld. However, normal 
ow is a good approximation to thenormal motion �eld at points where the image gradient magnitude is large [11].Normal 
ow vectors at such points can be used as a robust input to 3D motionanalysis.2.1.1 Normal 
ow �eld due to motionLet (nx; ny) be the unit vector in the gradient direction. The magnitude unm ofthe normal 
ow vector is given as unm = unx + vny which, from eq. (1), yields:unm = (�nxf) UZ + (�nyf) VZ + (xnx + yny) WZ (3)+ �xyf nx +�y2f + f�ny��+���x2f + f�nx � xyf ny� � + (ynx � xny)
Equation (3) highlights some of the di�culties of the problem of independent mo-tion detection. Each image point (in fact, each point for which a reliable normal
ow vector can be computed) provides one constraint on the 3D motion param-eters. In the case that only the observer is moving, the above equation holdswith the same set of 3D egomotion parameters (UE ; VE ;WE), (�E ; �E ; 
E) at allpoints. In the case, however, of independent motion, there is at least one moreset of motion parameters (UI ; VI ;WI), (�I ; �I ; 
I) which is valid for some of theimage points. Furthermore, if no assumptions regarding the depth Z are made,each point introduces an extra independent depth variable. Evidently, the problemcannot be solved if no additional information regarding depth is available.2.1.2 Normal 
ow �eld due to stereoConsider a stereo con�guration, where the optical axes of the two cameras areparallel. A pair of images captured with such a con�guration encapsulates infor-mation relevant to depth, that manifests itself in the form of disparities de�nedby the displacements of points between images. Since these images are acquiredsimultaneously, there is no dynamic change in the world that can be recordedby them. It can easily be observed that a stereo image pair is identical to thesequence that would result from a hypothetical (ego)motion that brings the onecamera to the position of the other. This remark enables the analysis of a stereopair employing motion analysis techniques. Speci�cally, a translational motion Us,directly related to the length of the baseline of the stereo con�guration, su�ces todescribe the hypothetical motion. According to eq. (3), a normal 
ow value unsdue to stereo can be computed at each point, which is equal touns = (�nxf) UsZ (4)In practical situations, the computation of normal 
ow from a pair of stereo imagesneeds further consideration. The computation of normal 
ow is based on the opti-cal 
ow constraint equation, which assumes that the motion between consecutive
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images is in the order of a few pixels. From eq. (4) it can be seen that the mag-nitude of the stereo normal 
ow at a point depends on the stereo baseline length(directly related to Us) and the scene structure (Z), but not on the coordinatesof the point on the image plane. If a lower bound for the scene structure andan upper bound for the baseline length can be established, it is ensured that thestereo-equivalent motion (and, therefore, stereo normal 
ow) can be bounded1.Additionally, the magnitude of the optical 
ow (and consequently of the normal
ow) is also a function of the spatial image resolution. Therefore, a proper se-lection of image resolution can be made, so that the magnitude of normal 
owvectors is within valid limits, at the cost of computing coarser depth information.2.2 Robust regressionRegression analysis (�tting a model to noisy data) is a very important statisticaltool. In the general case of a linear model [7], the problem is to estimate themodel parameters based on observations of the model that may be contaminatedwith noise. Traditionally, model parameters are estimated by the popular leastsquares (LS) method. However, the LS estimator becomes highly unreliable inthe presence of outliers, that is observations that deviate considerably from themodel describing the rest of the observations. Robust regression methods [7] havebeen proposed in order to cope with such cases. The main characteristic of robustestimators is their high breakdown point, which may be de�ned as the smallestamount of outlier contamination that may force the value of the estimate outsidean arbitrary range.The LMedS method, proposed by Rousseeuw [7], comprises one such robustestimation method. Qualitatively, LMedS tries to �nd a set of model parameterssuch that the model best �ts the majority of the observations. Once LMedShas been applied to a set of observations, a standard deviation estimate may bederived. Based on this estimate, the observations are classi�ed into model inliersand model outliers. LMedS has a very high breakdown point of 50%, which makesit suitable for the purposes of this work.3 Independent motion detectionConsider eq. (3) for all normal 
ows that have been computed from a pair ofsuccessive images in time. This relation forms a linear model, in cases where thedepth Z and the 3D motion parameters are constant for all points. In terms ofLMedS estimation, the outliers of the linear model will be either points for whichZ deviates from a dominant depth, or points whose 3D motion is di�erent fromthe dominant motion, or points where noise was introduced in the computationof normal 
ow. For the purpose of independent motion detection, we are inter-ested in the second class of points. If we are able to de�ne subsets of observationsthat correspond to points with (approximately) the same depth and restrict theapplication of LMedS to each of these subsets, then outliers should be due toindependent motion only. The third class of points may easily be discriminated,1nx does not violate this assumption since it is a normalized value in the range [0; 1].



British Machine Vision Conference
because it is expected that such points are very few and uniformly distributed overthe image plane. It is now possible to delineate the following algorithmic schemefor independent motion detection, for the case of unrestricted 3D egomotion: (a)segment the image points into depth layers, (b) for each depth layer, apply LMedSestimation to identify motion outliers, and (c) combine results across all depth lay-ers to get a global 3D motion segmentation. In the following, we provide solutionsfor the steps of the above, general algorithmic framework.3.1 Layering of a scene with respect to depthLet S be the set of all points pi, 1 � i � n, of the image plane for which reliablenormal 
ow values can be computed. Each point pi 2 S corresponds to a point Piof the 3D world, with a depth Zi from the observer. Each point pi may de�ne adepth layer Li, i.e. a subset of S, based on the following relation:Li = �pj : ����Zi � ZjZi ���� < �� (5)The above relation de�nes a set of points having depths that di�er from Zi by asmall percentage. Each of the layers Li can be interpreted as a \slice" of the 3Dspace, that contains 3D points within a range of depths from the observer. Thefarthest from the observer, the thicker the depth layers become, for the same �. If� is selected to be su�ciently small, then the depth variables within a layer Li canbe considered as constant, equal to some value Ci which depends on layer Li.Depth layering can be achieved by appropriate processing of the normal 
owvalues that are computed from a parallel stereo con�guration2. More speci�cally,eq. (4) can be written as g(Z) = AZ , where g(Z) = �unsnx is a computable quantity,and A = Usf is an unknown constant, dependent on the stereo con�guration only.Suppose that we want to check if a point pj belongs to the layer of a point pi.According to eq. (5), it is required that:����Zi � ZjZi ���� < �, ����� Ag(Zi) � Ag(Zj )Ag(Zi) ����� < �, ����1� g(Zi)g(Zj) ���� < � (6)Since g(Zi) and g(Zj) are computable quantities, we can decide whether two pointspi and pj belong to the same layer or not. Criterion (6) does not depend on thestereo con�guration parameter A. Therefore, knowledge of the exact length of thestereo baseline or of the focal length is not required. In practice, depth layeringis performed with an iterative scheme. First, a histogram of the function g(Z) iscomputed. The highest peak of the histogram is determined and the value of thefunction at this peak becomes the center for the de�nition of a depth layer. Allpoints which, according to criterion (6), belong to this layer are excluded fromsubsequent consideration. These steps are repeated until all points of the imageare assigned to depth layers. The presented method for depth layering can becharacterized as direct in the sense that it surpasses the problem of solving forthe stereo con�guration parameters and tries to extract information about depthbased on a speci�c function of normal 
ow.2Non parallel (i.e. �xating) stereo con�gurations can also be used for depth layering, but arenot reported here due to space limitations.
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3.2 Motion segmentation of a depth layerHaving segmented a scene into depth layers, the goal is now to segment each ofthese layers based on its 3D motion characteristics. Due to the process of depthlayering, it is known that depth di�erences within a layer are very small comparedto the distance from the observer. Robust regression in the form of LMedS canbe used in order to estimate the dominant 3D motion parameters in this layer,according to the model of eq. (3). LMedS is actually applied in order to estimatethe parameters ( UCi ; VCi ; WCi ) and (�; �; 
), where Ci is the depth de�ning the speci�cdepth layer. The application of LMedS will partition the points in a depth layerinto model inliers and model outliers. Model inliers correspond to points witha dominant 3D motion. Model outliers correspond to points where either thenormal 
ow values have been corrupted by noise or the underlying 3D motionparameters are not equal to the ones of the dominant motion. Theoretically, upto 50% of outliers can be tolerated. In the case of scenes with at most two rigidmotions, motion segmentation can be successfully achieved, since the one or theother motion will dominate and will be estimated by the LMedS regression. Incase that there may be more than two rigid motions, the segmentation may berecursively applied to the outliers of the previous robust estimation.3.3 Integration of results from the various layersThe step of motion segmentation of a layer Li produces � motion segments Mi1,Mi2, � � �, Mi�, each of which is characterized by a set of parameters ( UCi ; VCi ; WCi )and (�; �; 
). In order to come up with a 3D motion segmentation of the wholescene, it should be examined whether two motion segments belonging to di�erentdepth layers correspond to the same 3D motion. Unfortunately, the estimatedparameters are not pure 3D motion parameters because the translational compo-nents of the estimated vectors also include information about depth. Therefore,any direct comparison of the estimated parameter vectors across di�erent depthlayers is invalid, unless additional, quantitative information about depth is avail-able. Moreover, the combination of results cannot be achieved on the basis of theinlier or outlier characterization of the scene points, because the dominant motionin one layer may appear as a secondary motion in another layer.The task of parameter comparison is tackled by reducing the dimensionalityof the problem. From each 6-tuple of estimated parameters ( UCi ; VCi ; WCi ; �; �; 
)we derive a 5-tuple (m1;m2;m3;m4;m5) = ( UW ; VW ; �; �; 
) by dividing the �rsttwo coordinates of the 6-tuple by the third one. This 5-tuple depends only onthe 3D motion parameters. Therefore, it forms a basis for deciding whether tomerge motion segments residing in di�erent depth layers. The algorithm usedfor the comparison of the motion segments compares each motion parameter in-dependently. Consider the two motion 5-tuples (m1a;m2a;m3a;m4a;m5a) and(m1b;m2b;m3b;m4b;m5b) of motion segments a and b, respectively. These areconsidered identical i�:8i; 1 � i � 5; ���� mia �mibmaxfmia;mibg ���� < �m (7)where �m is a threshold that controls the sensitivity of motion discrimination.
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(a)
(b) (c) (d)
(e) (f) (g)Figure 1: (a) One frame from a synthetic stereoscopic sequence, (b), (c), (d) depthlayers, (e), (f), (g) motion segmentation.The dimensionality reduction employed, a�ects the discrimination of two motionswhen both their FOEs3 and their rotational parameters are identical. However,such cases are not common in practice and, moreover, cannot be tackled withoutusing metric depth information.In practical situations, the motion 5-tuples compared are not the estimatesprovided by LMedS, rather the least squares estimates of the model parametersover the points in the inliers set. This is because in cases where a set of observationshas no outliers, least squares estimation gives more accurate estimates of the modelparameters. It should be stressed, however, that having already segmented a layerwith respect to its motion parameters, all algorithms that can solve the egomotionestimation problem would su�ce to accurately estimate the motion parameters of aspeci�c segment and subsequently aid towards 3D motion parameter comparison.4 Experimental resultsThe proposed method has been tested with synthetic and real data. The values ofthe two thresholds �m and � (c.f. eqs (5),(7)) were experimentally set.A �rst result refers to synthetically generated images. The RAYSHADE [13]ray tracer has been employed to provide a sequence of stereoscopic images. Figure1(a) shows one frame of the sequence. The composed scene contains 4 arti�cial\buildings" on a checkered ground. All buildings have the same physical dimen-sions. The leftmost and rightmost buildings are at the same depth from the ob-server. The left-middle building is at a larger depth from the observer (comparedto the depths of the leftmost and rightmost buildings); the right-middle building isat an even larger depth from the observer. The observer performs a translationalmotion along the Z axis approaching the scene in view. At the same time, the twobuildings in the right half of the image are performing independent motions ontheir own. The rightmost building performs an independent translational motionalong the Y axis and the right-middle building performs a composite translationaland rotational motion. Figures 1(b),(c),(d) show the results of depth layering. As3The FOE is the point ( fUW ; fVW ) on the image plane, which de�nes the direction of translation.
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(a) (b) (c)Figure 2: (a) A real test image, (b) depth layers, (c) independent motion.can be veri�ed from this �gure, the three di�erent depth layers have been success-fully detected and outlined. The points corresponding to each layer have a blackcolor. The �rst layer corresponds to the two closer objects (leftmost and rightmostbuildings), the second to the object in intermediate depth (left-middle building)and the third to the object furthest from the observer (right-middle building). Fig-ures 1(e),(f),(g) show the results of 3D motion segmentation. Two independentmotions have been revealed (Figs 1(f),(g)). Egomotion is shown in Fig. 1(e). Itcan be observed that successful discrimination of all di�erent 3D motions in thescene has been accomplished, although they appear at di�erent depths. Moreover,the 3D motion of the middle-left building has been successfully characterized asbeing identical to that of the leftmost building.The method has also been tested using real data. The results obtained in allcases verify the robustness of the method. A sample result refers to the sceneof Fig 2(a), which consists of a distant background and a close to the observerforeground. The background consists of a number of static objects as well as an\equipment cart" (right-middle of the scene) and a box (right-top of the scene)that are independently moving between two consecutive image frames. The carthas two tool-racks, each carrying one box. The binocular observer also moves, withunrestricted 3D motion. The image foreground consists of a table on which a toy-car is placed. The depth layering is presented in Fig 2(b). Gray color correspondsto points in the image where normal 
ow has been rejected as unreliable. Forthe rest of the points, white color corresponds to the depth layer of the imageforeground and black color corresponds to the points of the distant background.The result of 3D independent motion detection is presented in Fig 2(c). In this�gure, gray color again corresponds to points where normal 
ow values have beenrejected as unreliable. However, black color now corresponds to the points movingrelative to the observer due to his egomotion, while white color corresponds toindependently moving points. From Figs 2(b) and 2(c) it can be observed that themethod provides correct discrimination of the two depth layers, as well as of theindependent motion of the cart (both upper and lower tool-racks) and the box.5 SummaryIn this paper, a method for independent 3D motion detection has been describedthat combines motion information with stereoscopic information acquired by a
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parallel stereo con�guration. The motivation behind the proposed method is toprovide robust 3D motion segmentation by employing the minimum possible as-sumptions about the external world and the observer. Instead of using optical 
ow,the normal 
ow �eld is used in both stereo and motion domains. Processing of thestereo-pair is limited to the task of scene segmentation into depth layers. Thus,the more general problem of fully recovering scene structure is avoided. LMedSestimation is the basic technique employed. The experimental results obtained, asmall sample of which is presented in this paper, demonstrate the robustness ande�ectiveness of the approach. Therefore, the method may become a powerful toolfor an observer navigating in a 3D dynamic environment.References[1] A. Horridge. The Evolution of Visual Processing and the Construction ofSeeing Systems. In Proc. Royal Soc., London B 230, pages 279{292, 1987.[2] R.C. Jain. Segmentation of Frame Sequences Obtained by a Moving Oberver.IEEE Transactions on PAMI, PAMI-7(5):624{629, September 1984.[3] W.B. Thompson and T.C. Pong. Detecting Moving Objects. IJCV, 4:39{57,1990.[4] P. Bouthemy and E. Francois. Motion Segmentation and Qualitative DynamicScene Analysis from an Image Sequence. IJCV, 10(2):157{182, 1993.[5] R. Sharma and Y. Aloimonos. Early Detection of Independent Motion fromActive Control of Normal Image Flow Patterns. IEEE Trans. SMC, 26(1):42{53, Feb. 1996.[6] R.C. Nelson. Qualitative Detection of Motion by a Moving Observer. IJCV,7(1):33{46, 1991.[7] P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection.John Wiley and Sons Inc., New York, 1987.[8] S. Ayer, P. Schroeter, and J. Bigun. Segmentation of Moving Objects byRobust Motion Parameter Estimation over Multiple Frames. In ECCV, 1994.[9] H.C. Longuet-Higgins and K. Prazdny. The Interpretation of a Moving Reti-nal Image. In Proc. of the Royal Society, pages 385{397. London B, 1980.[10] B.K.P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.[11] A. Verri and T. Poggio. Motion Field and Optical Flow: Qualitative Proper-ties. IEEE Trans. on PAMI, PAMI-11(5):490{498, May 1989.[12] Y. Aloimonos, I. Weiss, and A. Bandopadhay. Active Vision. IJCV, 2:333{356, 1988.[13] C.E. Kolb. Rayshade User's Guide and Reference Manual, 0.4 edition, 1992.


