
661

Recognition and Location by Parallel
Pose Clustering

W.J. Austin and A.M. Wallace
Dept. of Computing and Electrical Engineering

Heriot-Watt University
Edinburgh EH14 4AS

Abstract

This paper describes the recognition and location of 3D object models
from depth-based data using a parallel pose clustering algorithm. We
describe a leader-based partitional clustering algorithm and demon-
strate a successful parallel implementation of this. Results are pre-
sented for a variety of synthetic and real scene data. We also consider
how the basic approach can be extended to recognise objects from a
single 2D intensity image by perspective inversion. Our eventual aim is
to combine such a dual data approach within a single parallel system.

1 Introduction

Object recognition and location can be achieved by a variety of algorithmic ap-
proaches [1], including generalised Hough transformation [2] or pose clustering [3]
which have been suggested as suitable candidates for parallel implementation. In
these approaches, a candidate pose can be computed from any minimal subset
of matched model and scene features, for example surfaces or space curves in a
depth image are compared with a model surface representation. If all such subsets
are considered, these can be stored in a transformational or pose space. Clus-
ters or accumulations of points in this space represent probable pose and object
identification.

For parallel implementation, Hough transformation has an obvious appeal [4].
Since the image and parameter space are pre-defined and rigid it is possible to
employ data parallelism either over image points or parameter bins, though points
that form a cluster in parameter space will in general be spread out in image
space, and vice versa. This can cause problems in parallel implementations: if the
parameter space is split among the processors, matched features are broadcast to
all processors and duplication of effort occurs; if the feature space is distributed,
subsequent redistribution of the parameter space for peak detection may outweigh
the parallel advantage [5].

However, there are more fundamental problems associated with the use of gen-
eralised Hough transformation for pose determination in 3D space. Dependent on
the representation of the pose matrix, there may be at least five or six translational
and rotational parameters. Where the dimensionality of the parameter space is

BMVC 1995 doi:10.5244/C.9.66



662

high, storage restrictions limit the resolution that can be achieved. Fixed param-
eter space quantisation can lead to difficulties if an interesting feature straddles a
cell boundary. Such problems result in diffuse peaks that can be difficult to detect
and may fall below the background noise level. In general, the parameter space
is sparsely filled and various authors have proposed hierarchical algorithms that
exploit this by concentrating only on 'significant' regions of the parameter space,
e.g. [6]. Another way to reduce the space complexity of the HT is to restrict the
number of parameters that are initially accumulated.

Pose clustering avoids problems related to the parameter space, but may be
less suitable for parallel implementation, at least at first sight. In this alternative,
the translational space is not defined explicitly as a quantised accumulator array.
Instead the exact values of candidate poses are retained and grouped together
according to some distance measure. This avoids quantisation problems and only
requires sufficient storage for the pose estimates and their associated cluster labels.

Data clustering algorithms can be split into two main classes, hierarchical and
partitional [7]. In the former, clusters are represented in a hierarchical data struc-
ture and we move from single atomic clusters towards a single data cluster by
merging clusters (or in the opposite direction by splitting) with the aim of detect-
ing the substructure that best represents the data. In the latter a single partition of
the data is sought and the number of clusters, K, is fixed in advance. Clusters may
be formed by minimising a global measure such as square error or a local measure
such as proximity. A common approach is to form K initial clusters and iteratively
refine these by moving data vectors between clusters such that the global error or
cluster radius is reduced. The effectiveness of this approach is clearly influenced
by the size of K. UK does not match the data, the clusters that are derived may
be meaningless.

In this paper, we show how a parallel pose clustering algorithm can be im-
plemented successfully and demonstrate the efficiency of the algorithm on both
synthetic and real depth data. However, we have an additional motivation for the
use of pose clustering, that we wish to employ the same approach to determine
pose from a perspective intensity image as well. This will not be a separate process;
scene features will be extracted from both intensity and depth data concurrently
and used in an optimal fashion to locate and identify the object.

2 A Pose Clustering Approach

Our pose clustering algorithm examines point-vector (pv) pairs that represent the
orientation and location of surfaces in the model and scene. Four surface types
can be represented in the model: planes, cylinders, cones and spheres. Since an
orientation vector cannot be reliably extracted for spherical surfaces, only the first
three are used in the clustering process.

The parallel clustering algorithm is based on a partitional approach that uses
local proximity measures. While in clustering it is common to use a single proximity
measure, it is often difficult to produce a proximity measure that is 'fair' to all
components of the data vector. The pose clustering problem can be split naturally
into rotational and translational components giving rise to two proximity measures
that can be varied simultaneously in the clustering process. There are 5 basic steps



663

in the clustering process: pose estimation, initial cluster determination, cluster
centre determination, iterative cluster refinement, and hypothesis extraction.

2.1 Pose Estimation

Pose estimates are determined by considering pairs of matched model and scene
pv pairs. Given a pair of model orientation vectors, (i>i,i>2) and a matched pair of
scene orientation vectors, {si,s2), the axis and angle of rotation (AR and OR) are
determined by the following equations [8]

AR = (vi - si) ® (v2 - s2) (1)

and

^ ^ 1 ^ * ^ . (2)

Once the rotational component of the pose is known the translational component,
T, is determined using

Ps = PmR + T (3)

where ps is a scene location point, pm is the matched model location point and R
is the rotation matrix formed using AR and OR.

To generate match hypotheses, the pose estimates determined by comparison
of pairs of matched model and scene pv pairs are clustered. To consider all possible
combinations of model and scene pairs is computationally expensive so an 'inverted
index' into the model base is used to reduce the number of plausible matches.
Given the angle between the scene orientation vectors and the distance between
the location points, the indexing function returns a list of model pv pairs that are
compatible with each scene pv pair. The indexing function uses angle, distance
and type constraints. Each pair of 'matched' model and scene pv pairs can result
in up to 4 different solutions of equations 1 to 3 due to uncertainty in the order of
the vectors in the equations.

2.2 Initial Cluster Determination

The initial clusters are determined using a 'leader' clustering process [9]. Normally,
K data vectors are selected as cluster leaders and the remaining data are assigned
to the closest leader. This basic process has been modified to allow variable K.
Only one leader is allocated initially and new leaders are created each time the
current pose estimate is found to be 'incompatible' with an existing vector. Com-
patibility is determined by comparing the rotational and translational components
of the current pose estimate with the existing leaders until agreement is found or
a new leader is created.

2.3 Centre Determination and Axis Resolution

Once the initial clusters are known, the centre of the clusters (i.e. the translation
and rotation that best fit the clustered data) can be determined by least-squares
techniques. Kanatani [8] shows how a correlation matrix, Mk, can be used to find



664

the rotation that best fits a set of matched model and scene vectors. This matrix
is represented by the equation

fra^) (4)
where nv is the number matched vectors associated with a cluster and vmi and vsi
are matched model and scene vectors respectively. Kanatani shows that singular
value decomposition (SVD) of Mk can be used to determine the rotation matrix
and therefore the axis and angle of rotation. Having determined a least squares
solution for rotation, the uncertainty that exists in equation 1 can be resolved and
approximately half of the initial clusters can be deleted before refinement begins.

2.4 Iterative Cluster Refinement

During cluster refinement each pose estimate is compared with all cluster centres;
this is carried out on the translational component, rotational compatibility within
the cluster is maintained. When a pose estimate is found to be closer to a different
cluster center, this is noted and, once all comparisons have taken place, inter-
cluster moves are implemented and the affected cluster centres are recalculated.
This continues until no further moves are necessary or the maximum number of
iterations is exceeded.

2.5 Hypothesis Extraction

The final stage of the clustering process extracts a list of unique matched model
and scene features that are associated with each cluster. Model surfaces that
match more than one scene patch in any given cluster can be detected at this
point. The resulting hypothesis can then be passed to a verification process for
further examination if required.

3 Parallelism in Pose Clustering

Applying each of the stages described in sections 2.1 to 2.5 in turn results in
a serial clustering algorithm. However, parallelism can be identified at several
different levels of this process. Pose estimation is independent for each matched
model and scene vector pair. Similarly, the SVD-based calculation of rotation for
each of the initial clusters can be carried out in parallel. During refinement,pose
estimates can be compared with the cluster centres in parallel and, if there are
sufficient changes, the re-calculation of centres can also be performed in parallel.

The algorithm is implemented in occam 2 on a Meiko computing surface. To
achieve good parallel performance in this environment it is necessary to reduce
data movement as much as possible. This is achieved by using only minimal
coordination data at a central farmer process. Tasks are farmed out to the worker
processes but only minimal results are returned, the bulk of the data is retained in
the worker network: only the correlation matrix contributions and leader/centre
values are passed over the communications links during clustering. Figures 1 and



665

2 illustrate the main tasks carried out by the farmer and worker processors during
clustering, communication steps are marked Out or In to indicate transmission
or receipt of data respectively.

Each worker receives a proportion of the 'matched' model and scene data and
generates pose estimates from these. Leader clustering is performed locally when
the pose estimates are generated and the local contribution to each cluster's corre-
lation matrix is accumulated. When the local leaders are complete the leader pose
and correlation matrix for each significant cluster is returned to the farmer process
where individual clusters are merged if their leader poses agree. 'Significance' is
determined by a simple threshold on cluster size, experiments have shown that
the combination of variable K and rotational and translational tolerances result
in many 1 or 2 element clusters that can safely be ignored. The size threshold
reduces the communications overhead at the end of the leader clustering phase.

The centres of the merged clusters are determined by farming out the SVD-
based calculation to the workers. Once the centres are known and axis resolution
has been performed the centre information of the valid clusters is broadcast to the
workers and refinement begins.

Parallelism in the refinement stage is similar to the iterative cluster refinement
process described by Barlos and Bourbakis in [10]. During each iteration the
workers compare the valid pose estimates that are stored locally with the cluster
centres. When a pose estimate is moved between clusters this is reported to the
farmer where recalculation of centres at the end of each iteration is coordinated.
Work is approximately balanced as each worker receives the same number of model
and scene pairs and should retain roughly the same number of valid estimates as
any other worker. Fine tuning of the load balance would require the movement
of pose estimates between processors and the cost of this is likely to outweigh the
possible benefits. Currently recalculation of the centre values is carried out at the
farmer process.

When refinement is complete each worker determines its own contribution to
the clusters and transmits this to the farmer where the data is combined and
presented to the user.

4 Experimental Results

We are interested in using the parallel pose clustering process in a multi-level,
multi-data source vision system with high, middle and low level vision processes
and processing routes for depth, intensity and fused depth/intensity data. To do
this we are interested in how modification of the control parameters (size thresh-
old, rotational tolerance (Atol), translational tolerance (TranTol) and the index
tolerances) affect the performance of the system.

Here we consider the effect of the number of worker processes and the size of
TranTol (Atol and the index function tolerances were set to values reflecting the
accuracy of the input data, the cluster size threshold was set to 5). TranTol was
varied between 5mm and 50mm and 5 different worker grids were employed. For
each data set, three separate tests were carried out. In the first, noise free scene
data was generated directly from the model. In the second and third, random
perturbations were added to the scene data; in both cases the orientation vectors



666

Generate compatible model and scene feature pairs

Transmit subset of pairs to each worker Out 1

Receive local leader data from workers & merge In 2

Transmit k-matrix tasks to workers (for SVD) Out 3

Gather centres and resolve axis In 4

Transmit centres to workers (* Init refine *) Out 5

nmoves = 1, iter = 0

WHILE (iter < Maxlter) AND (nmoves > 0) DO

Gather move lists from workers In 6

Modify k-matrices and calculate new centres

Transmit changes to worker processes Out 7

iter = iter + 1

END WHILE

Gather and merge match l i s t s from workers. In 8

Figure 1: Farmer processing during parallel pose clustering.

Receive compatible model-scene fea tu re p a i r s In 1
FOR each matched p a i r DO

Estimate pose
Add pose to leader c l u s t e r s and accumulate K-matrix

END FOR
Transmit l eaders and k-matr ices to farmer Out 2
Receive k-matr ices from farmer and perform SVD In 3
Transmit cen t res to farmer Out 4
Receive complete cent re l i s t from farmer In 5
re f in ing = TRUE
WHILE re f in ing DO

Determine i n t e r - c l u s t e r moves
Transmit move l i s t t o farmer Out 6
Receive cent re updated from farmer In 7
IF (new cent res = 0) THEN

re f in ing = FALSE
END IF

END WHILE
Gather match info and send to farmer. Out 8

Figure 2: Worker processing during parallel pose clustering.



667

(b)

(c)

Figure 3: An example of pose clustering applied to real scene data (a) to match
model (b) using segmentation (c). The resulting pose estimate is shown in (d).

were perturbed within a 2 degree cone of the true value, the location points were
perturbed by random vectors of maximum size 2.5mm and 5mm respectively.

Four sets of simulated input data were considered, in the first the model and
scene data were derived from the same CAD object model. The scene data was
generated by transforming the object model and the same number of vectors ap-
peared in the model and scene. In the second data set the same object model
was used but the transformed scene data was restricted to 12 pv pairs. For the
third test data set 20 model point-vector pairs were randomly generated and the
scene data derived by transforming this model. The final data set also contained
20 randomly generated model pv pairs but the orientation vectors were aligned
along 4 main axes to simulate orientation vectors in a typical object model. An
example of clustering applied to real data is given in figure 3.

The experiments showed that varying TranTol within the range 5mm to 50 mm
had little effect on speedup. Figure 4 shows the speedup characteristics that were
obtained with a translational tolerance of 5mm for test data 1 and 4 respectively
(speedup is measured relative to a serial version of the program that runs on
a single transputer). For the model-derived scene data, the effects of noise are



668

100

10

1

•B-

No noise

2.5mm noise
-X-
5.0mm noise

- - - - J^^::::::::::::::::::::::::::::^

— i \ 1 1 1—
4 9 16 25

Number of workers
4 9 16

Number of workers

(a) (b)

Figure 4: Speedup for test data 1 (a) and 4 (b) with TranTol = 5mm

minimal. In test data 4 the addition of 5mm noise vectors to the location vector
results in a fall in speedup. This occurs because the translational tolerance is close
to the level of the added noise and inter-cluster movement during refinement is
possible. Increasing the translational tolerance to 10mm results in fewer initial
clusters and no similar fall in speedup is observed.

For test data 1, the best cluster contained all of the expected model-scene
matches. When the translational tolerance exceeded the minimum inter-surface
separation in the model, spurious matches were also introduced. For the test data
2 (not illustrated), only 9 of the 12 expected surfaces appeared in the best cluster
indicating that the size threshold should be reduced to avoid loss of data in the
leader clustering process. If the threshold is too high, relevant local clusters can
be missed. This is especially true as the number of worker processes increases (and
the number of pose estimates held by each worker decreases).

For randomly generated data set 3 (not illustrated), a single best cluster con-
taining all of the expected matches was generated in the absence of noise. When
perturbation is introduced, the main cluster can become split as the number of
workers increases. This occurs when the selected leaders are close to the edge of
the cluster and could prove problematic if the splitting results in clusters that fall
below the threshold size (though this was not observed in the test data). Exami-
nation of the split clusters show that a single cluster can be recovered by merging,
either following initial centre determination or once refinement is complete. Simi-
lar splitting of the main peak as the number of clusters increased was observed for
test data 4. The introduction of 4 principal orientation directions in this data also
led to a higher number of clusters being generated. This can be attributed to the
increased probability that a scene pv pair will be compatible with more than one
model pair that occurs when the orientation vectors are aligned. These additional
clusters were all close to the threshold and can be distinguished from the main
cluster.



669

4.1 Super-linear Speedup

The speedup characteristics in figure 4 show that super-linear speedup, i.e. speedup
in excess of the number of worker processes, has been achieved in all but one of
the cases. This occurs because the parallel version reduces the total amount of
computation that is required in the centre determination and refinement phases.
In the parallel version the cluster size threshold is applied at the worker processes
rather than on the complete pose space, since each worker examines fewer pose
estimates than the serial process this results in greater 'pruning' of the pose space.
This means that fewer least squares calculations are required during centre deter-
mination. During refinement there are fewer clusters and the number of retained
pose estimates is smaller than in the serial version so the number of comparisons
is reduced. This reduction in total computational effort enhances the speedup
characteristics of the parallel algorithm and leads to the observed super-linear
speedup.

The size threshold in the parallel program could be reduced in proportion to the
number of workers to increase the total amount of calculation carried out by the
parallel program. While this would allow a more direct comparison with the serial
program, the experiments show that the results of the parallel program are not
significantly worse than those of the serial program and that the parallel advantage
obtained by keeping the same threshold in both cases should be retained.

5 Further Work
As mentioned earlier, the parallel clustering process will be employed in a multi-
level, multi-data system. Before a control process can be developed for this system,
it will be necessary to perform further tests to determine the effect of each of
the control parameters (index tolerances on distance and orientation, threshold
size, and rotational and translational tolerances on leader clustering) on overall
algorithm performance.

The clustering process can be used to cluster and match intensity-based data
by changing the pose estimation process to deal with perspective inversion while
the remainder of the clustering process remains largely unchanged. Parallel algo-
rithms for 3D model-based matching from perspective images exist already [11].
The same direct solution can be used to solve 3-point and 4-point perspective prob-
lems allowing a number of difference scene primitives to be handled, for example
trihedral junctions and line-arc combinations by 3-point perspective inversion and
line-line combinations by 4-point perspective inversion.

While it is possible to envisage clustering depth and intensity pose estimates
in the same process, the main difficulty in matching intensity-based features is the
lack of constraining information that results from the perspective imaging process.
This is expected to result in higher data volumes during intensity-based clustering
and it may be impractical to cluster both sources of pose data in the same process.
Instead depth-based processing may be used to provide constraining information
to the intensity-based process.



670

6 Summary

We have described a pose clustering algorithm that can be used to recognise and
locate 3D object models from depth data. A parallel version of this algorithm has
been implemented and shown to exhibit super-linear speedup in some cases. By
modifying the pose estimation process we expect to be able to recognise 3D objects
from a single perspective image, either using the same clustering process as the
depth data or in a separate clustering process that cooperates with a depth-based
clustering process.

7 Acknowledgments

This work was supported by ESPRC grant number GR/J07884.

References

[1] A.M. Wallace. A comparison of approaches to high level image interpretation.
Pattern Recognition, 21(3):241-249, 1988.

[2] D.H. Ballard. Generalising the Hough transform to detect arbitrary shapes.
Pattern Recognition, 13(1):111-122, 1981.

[3] G. Stockman. Object recognition and localisation via pose clustering. Com-
puter Vision, Graphics and Image Processing, 40:361-387, 1987.

[4] V.F. Leavers. Which Hough Transform? Computer Vision, Graphics and
Image Processing: Image Understanding, 58(2):250-264, 1993.

[5] W.J. Austin, A.M. Wallace, and V. Fraitot. Parallel Algorithms for Plane
Detection using an Adaptive Hough Transform. Image and Vision Computing,
9:371-384, 1991.

[6] H. Li, M.A. Lavin, and R.J. Le Master. Fast Hough Transform: A Hierarchical
Approach. Computer Vision, Graphics and Image Processing, 36:139-161,
1986.

[7] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall,
1988.

[8] K. Kanatani. Geometric Computation for Machine Vision. Oxford Science
Publications, 1993.

[9] J.A. Hartigan. Clustering Algorithms, chapter 3. Wiley, 1975.

[10] F. Barlos and N. Bourbakis. A Parallel Image-clustering Algorithm on the
'HERMES' Multiprocessor structure. Engineering Applications of Artificial
Intelligence, 5(4):299-307, 1992.

[11] A.M Wallace, G.J. Michaelson, P. McAndrew, K.G. Waugh, and W.J. Austin.
Dynamic control and prototyping of parallel algorithms for intermediate and
high level parallel vision algorithms. IEEE Computer, 25(2):43-53, 1992.


