
217

Ground Plane Obstacle Detection of
Stereo Vision Under Variable Camera

Geometry Using Neural Nets

Y. Shao, J. E. W. Mayhew, S. D. Hippisley-Cox
Artificial Intellegence Vision Research Unit

University of Sheffield
Psychology Building, Western Bank

Sheffield, S10 2TP
United Kingdom

yuanOaivru.Sheffield.ac.uk

Abstract

We use a stereo disparity predictor, implemented as layered neural
nets in the PILUT architecture, to encode the disparity flow field for
the ground plane at various viewing positions over the work space.
A deviation of disparity, computed using a correspondence algorithm,
from its prediction may then indicate a potential obstacle. A casual
bayes net model is used to estimate the probability that a point of
interest lies on the ground plane.

1 Introduction

Being able to detect floor obstacles or deviations from planarity of the ground
plane is essential for mobile robot navigation. The work reported here uses a four-
degree-of-freedom stereo camera rig1 to detect any obstacle lying on the ground
plane, and is part of an ongoing project of 3-D stereo vision reconstruction and
mobile vehicle control.

The most straightforward solution to the problem perhaps is to recover the
depth of the whole scene, or a selected region of interest, by triangulation, then
to fit this depth information into a plane model. This solution, however, requires
to know the extrinsic parameters of both cameras to a high degree of accuracy.
Unfortunately this is not usually the case. When the rig moves, even under control,
a great uncertainty of camera position and pose may be present due to various
sources of error: mechanical, dynamic, kinematic and control as well.

Therefore, statistical and probability-based theories are widely employed to
work out various proposed solutions.

'The stereo camera rig used for this work comprises two 3-link kinematic chains with rotation
around Pan, Tilt, left and right Verges.
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2 Previous Work
D. M. Booth, et al [2] in their paper present a two pass algorithm to detect ground
plane obstacles using fixed cameras. First, they solve the correspondence problem
by matching grey level intensity rasters. In the second pass, confidence measures
of disparity estimations are computed by comparing the noise model with the
residual error distribution of correctly matched rasters. The Bhattacharyya dis-
tance between two univariate distributions is used to construct an approximation
of error probability, which gives a measure of belief that a given pixel represents
a point that belongs to the ground plane.

M. R. M. Jenkin and A. Jepson [5] try to detect floor anomalies by verifying the
planarity assumption. First a known 3D calibration object is used to calibrate the
fixed cameras. With the resulting matrices and an initial rough estimation for the
floor parameters, they are able to model the ground. Then the coefficients in this
model are refined. Based on the constancy assumption, a phase-based disparity
scheme is chosen to acquire the measurement of the disparity. Also a mixture
model is employed to represent the disparity as arising from one of several simple
distributions, specifically, those for outlier, for floor and for objects near floor.
Finally, a so-called EM-algorithm (Estimation and Maximization) is constructed
to compute "ownership likelihoods" at each pixel.

To detect ground plane obstacles under variable camera geometry, S. Cornell, et
al [3] use a Parametrised Interpolated Look-Up Table (PILUT) [6], implemented
as layered neural nets [10], to predict the features correspondence (disparity),
which is indexed by head state. Any deviation from the predicted images coordi-
nates then may indicate a point in space which is not on the ground plane. The
experiment showed the successful discernment of a 2cm high obstacle at a distance
of about lm.

3 Our Approach
The work reported here is an extension of that done by S. Cornell, et al. We are
not going to detect obstacles directly. Instead, we try to check whether a point of
interest lies on the ground plane. To do so, we need to build a disparity model
for the ground plane. Here, PILUT again is used to encode the disparity map of
the ground plane so as to avoid the dependency upon the camera calibration and
the dynamics of the camera rig. A modified Forstner corner detector is employed
to find points of interest. A casual Bayes net is built to combine the disparity
deviation of matching from prediction with the Bhattacharyya distance, which
is used to measure the distance between the two residual error distributions. A
likelihood measurement can then be derived from this Bayes net. The system is
illustrated in Figure 1.

4 Encoding Disparity Mapping Using PILUT

The general principle of the PILUT is to use a linear combination of basis functions
to approximate a multi-dimensional function. The tensor product of polynomial
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Head State YR)

Head State

Figure 1: System scheme

and radial function bases is used to form the blended polynomial expansion.
For instance, to approximate

V = f(xo,xi,...,xn),

we use a blended polynomial expansion of the form

where the 0,(x) form a polynomial basis, (e.g. contant basis (1), affine basis
(1, xo, x\,..., xn), or higher order basis, and the ipj(x) are a radial basis (RBF),
with

where the rrij is the mean and the Sj covariance. To obtain gaussian RBF, we set
g = exp. After we have chosen our bases, the cofficients Uij, xxij and Sj are then
learned from training data using a scalar measurement kalman filter.

We use PILUT to approximate the functional relationship between disparity
flow field and rig head state. There are 7 degrees of freedom(the pan of the rig
being kept still during experiment): head tilt (T), left and right verge (LV and
RV), x and y coordinates of a point of interest in left image (xi and yi) and in
right one (xr and yr). The first five can be considered as inputs of the function
while the last two are outputs.

Images captured are rectified using framerate hardware to approximately (pseudo)
parallel camera geometry [9] will reduce the vertical disparity by a great amount.
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However, for some bad camera geometries, they are still of the order of 10 pixels,
as can be seen from the disparity map of Figure 2(la).

Before PILUT is capable of predicting feature correspondence, we train the nets
off-line with a set of training data. Training data is obtained by keeping the camera
foveating a target on the ground floor [7]. A pair of images of a calibration tile is
made so that we can use an earlier developed automatic calibration grid detector
based on Forstner corner detection to provide 64 pairs of precisely corresponding
corners at each head state.

When training PILUT, some parameters, like number of nodes, polynomial
order, RBF, etc., need to be chosen. Generally speaking, the more the nodes
and the higher the order, the better the fitting, but at the price of storage and
computing time. To find suitable PILUT learning parameters, results by different
PILUTs are compared. RMS (Root of Mean Squared) error and MAX error are
used to evaluate PILUTs' performance. Experiment tells a PILUT with quadratic
or affine polynomial basis and Gaussian RBF is competent to learn the disparity
map. The resulting RMS error is .55 pixel and the MAX one 3.17 pixels for
a typical head state. Figure 2 illustrates how well a trained PILUT predicts
the disparity. Figure 3 gives PILUT's performance by pre- and post-learning
comparison of frequency and cumulative distributions of retinal errors for a stereo
image pair of a practical scene.

5 Correspondence

We check points of interest in an image so that we do not need to compute at every
pixel. Corners, here detected by a modified form of the Forstner corner detection
algorithm [4]2, are chosen to represent the points of interest.

We refer to the coordinates of the i-th pixel and its gradient by p; and f;
respectively, then the coordinates of a coiner candidate are given by

where
m: the numer of pixels int the window,
W,- = f,f,T, "square of gradient".
We use the following correlation algorithm to match a corner in the left image

with one in the right image. Labelling the disparity at pixel (x, y) in the left image
by (dXtdy), we set

where
* & ( * • y)=W E , - j Wij{IL{x, y) - IR(x + i,y + j) - iaj{x, y))\

i*iA*f v) = w E.-.- Wi<i (/i(ar> y) ~ W* + *»» + i)).

2 Among other popular cornor detectors is the Moravec's formulation [8].
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(la) pre-learning for T=-12.47°
LV=0.77°, RV=-8.23°

(lb) post-learning
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(2a) pre-learning for multi-headstates (2b) post-learning

Figure 2: Comparison of pre-learning diaparity and post-learning disparity errors

1: the patch length,
h: the patch height (width),

Wi j = ( l ~ 2 ; ) ( l ~ W i ) : P8*10'1 masking cofficients which put a priority over
pixels near center.
It is easy to see that computed disparity satisfies the maximum similarity between
two patches in the left image and the right one respectively.

6 Combination of Prediction and Matching
Errors

Now for a corner point p = (x, y) in the left image, we can compute its matching
disparity (dx, dy) from the correlation. Also we can obtain its prediction disparity
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and cumulative distributions of disparity/errors <nod>

2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 28.00

Figure 3: Frequency and cumulative distributions for pre-learning disparity and
post-learning errors

(d'x,d'y) using PILUT. The difference between those two disparities then serves
as an indicator of that the point p comes from an obstacle or the ground plane.
However, experiments show that this deviation is not always very robust, especially
when we are trying to detect small obstacles. So we need combine it with other
measurements. The values for (idx,dy and a2

di d , attained whilst computing the
matched correspondence, can be thought as the mean and variance of the gaussian
distribution of residual error. Also the mean fid'Itd' and variance a\, d, for the
disparity (d'xld'y) predicted by PILUT at pixel (x, y) can be computed. The
similarity between the two distributions N(fidxidy,(Tdxidy) and N(p.diiidi ,<Td'x,d'),
like the disparity deviation, gives as a measure of the probability that the pixel (x,
y) represents a point that lies on the ground plane. Here we use the Bhattacharyya
distance between two iinivariate distributions N(ni,ai) and iV(/Z2i C2) [1]>

With the hypothesis H, a given point lies on the ground plane, and bayesian
variables D for the disparity deviation and B for the Bhattacharyya distance, it
is easy to build a simple casual Bayesian net, illustrated in Figure 4.

Suppose we do not have any knowledge about the prior probability P(H), then
we take P(H) — P{H) — 0.5. Then the probability updating can be described as
follows:

P(H | D) =

P(H I B) =

P(D | H) + P(D | H)'
P(H) — P(H | D),

P{B\H)P{H)
P(B | H) • P(H) + P(B | H) • P(H)'
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Figure 4: The casual bayesian net for GPOD

(a) Left image

\ **• s * °

(b) Right image

Figure 5: Rectified image pair of floor and obstacles

7 Experiment results and Conclusion
The rectified image pairs shown in Figure 5 was obtained to test the above algo-
rithm. The obstacles consist of a piece of card of thickness of about lmm, a pen
with diameter of 7mm, a battery dimensions of 45(/) x 26(u>) x 15(/i) mm, and
a typical industrial object of bigger size. Also some English letters and Chinese
characters were written on the floor in order to make it well textured.

Figure 6 shows the retinal error distributions for ground plane with and without
obstacles. Figure 7 illustrates how corners were recognised arising from floor or
an obstacle. Figure 8 gives the receiver operating characteristic curve.

From the experiment results, the following conclusions can be drawn:

• A PILUT using affine fitting blended with Gaussian RBF gives a good fit the
disparity flow field mapping across the whole head state dimension.

• The probabilistic, measurement derived from disparity deviation and Bhat-
tacharyya distance performes well.
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• : a point on ground floor • : something unsure x : obtacles

Figure 7: Ground plane obstacle detected
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Figure 8: Receiver operating characteristic curves
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Figure 6: Frequency and cumulative distributions of disparity deviations for
ground and ground with obstacles respectively

• The system can precisely detect the battery and the industrial object, while it
keeps the false alarm error less than 5%.

• More than 50% corners coming from an as thin as lmm piece of card can be
detected, but at the cost of about 20% false alarm error.
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