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Abstract

Classic curvature-minimizing active contour models are often incapable
of extracting complex shapes with points of high curvature. This pa-
per presents a new active contour model which overcomes this prob-
lem and which can be applied to image segmentation as well as shape
description in order to allow for quantitative and qualitative studies
of shape measurements at multiple scales. Multiscale differential op-
erators, which are invariant to linear intensity transformations such
as contrast or brightness adjustments and independent of coordinate
transformations, are integrated into the model's spline energy func-
tional. Whereas the image intensity gradient attracts the spline con-
tour to image features, the isophote curvature of the image intensity
function is used for matching the contour curvature. This novel cur-
vature matching approach appears to be very useful for the extraction
of very complex and strongly curved objects such as brain contours,
results of which will be presented in this paper.
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1 Introduction

Active contours or snakes were first introduced by Kass et al. [7, 16]. They
are a segmentation tool based on minimizing the energy of a spline contour in
terms of internal and external constraints. The internal constraints determine the
autonomous shape of the model, while the external constraints draw the model
towards image features. The contour described by the active contour model is
given by a vector v(s) = (x(s),y(s)) with arc length parameter s. The energy
functional of the contour is denned as

I l

Knake = J Esnake{v(S))ds = J Eintern(v{s)) + Eimage(v(s))ds , (1)
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where Extern is the internal energy of the contour with respect to elastic defor-
mations and bending of the active contour. The internal energy is defined as

Eintern(v(s)) = a(s)\vs(s)\2 + p(s)\vss(s)\2 , (2)

where the first order or elasticity term, vs(s), makes the snake behave like a
membrane, and the second order or bending term, vss(s), makes the snake behave
like a thin plate.

The image energy term Eimage pulls the active contour towards features in the
image and can be defined as suggested by Kass et al. [7] using the image intensity
gradient:

Eimage(v(s)) =-\VI(x,y)\2 (3)

During the optimization process, the active contour is deformed with respect to
the features to be localized. There are several optimization approaches for active
contour models, including a variational approach by Kass et al. [7], dynamic
programming by Amini [1], the greedy algorithm by Williams and Shah [17], genetic
algorithms by Cootes et al. [6], and stochastic relaxation techniques by Rueckert
[13]. For the purpose of this paper, only a local deformation of the active contour is
desired, hence a refined greedy algorithm providing an efficient local optimization
was found suitable.

This paper proposes a new approach using active contour models as multiscale
shape descriptors. Using scale space continuation in active contour models pro-
vides the ability to capture image features at the adequate scale. Using an initial
active contour model, several implicit optimization processes with differently reg-
ularized energy functions with respect to scale are performed. The results are
formulated in a multiscale hierarchy and are qualitatively and quantitatively eval-
uated. In the following sections, we will present this refined model.

2 Curvature Matching Process in Scale Space

Over the last few years, multiscale approaches in image analysis have proved to
be useful in terms of describing images at varying levels of resolution. The funda-
mental concept of multiscale image processing was developed by Koenderink [8]
and Witkin [18]. The underlying image can be represented by a family of images
on various levels of inner spatial scale. These are obtained by convolution with
the Gaussian kernel as the lowest order, rescaling operator, and its linear partial
derivatives. A continuous scale space is constructed to enable local image analysis
in a robust way, while at the same time global features are captured through the
extra scale degree of freedom. Multiscale differential invariants, as presented by
Romeny et al. [14, 15], are true image descriptors that resemble the receptive field
profiles in the human front-end visual system and are invariant with respect to
the chosen coordinate system and linear transformations of the image intensity.

The curvature term in the internal energy term in equation (2) minimizes the
bending of the active contour model assuming that the object of interest has a
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Figure 1: Prom top to bottom: Gaussian smoothed image, gradient image and isophote
curvature image for (from left to right) a = 1, a — 2, a = 4, <r = 8 and a = 16.

smooth contour with low curvature. However, this does not take into account
that some objects of interest may have contour parts of high curvature. Cohen [5]
proposed to use implicit expressions of material densities by optimizing bending
densities depending on the metric as well as on first and second order variations of
the gradient potential along the model. Rougon [12] refined this approach by using
oriented anisotropic adaptive material parameters that explicitly depend on the
parameterized contour function. Yet none of these approaches takes the underlying
image intensity curvature into account. This paper proposes the integration of a
matching process between the image and contour curvature into the active contour
model, in order to adapt the curvature of the active contour to the curvature of
the image intensity function. This is achieved by minimizing the deviation of the
isophote image intensity curvature from the contour curvature.

2.1 Image Curvature

In order to compute the curvature of an image with respect to scale (or tolerance
with which the image is processed), the image is convolved (blurred) with a small
neighbourhood-averaging kernel. Blurring the image with increasingly larger ker-
nels produces larger-scale versions of the image. It has been shown [8] that the
Gaussian G or derivatives of the Gaussian as solutions to the diffusion equation
are the only reasonable scaling operators:

(4)
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where <Ji is the scale or width of the scaling operator. In order to build a scale
space, the scale is sampled exponentially as crj = a o / \ where ao is the initial scale
and / is the scale-change factor. We will denote the Gaussian smoothed image
as L(x, y; &i) or just L, and its partial derivatives (convolutions of the image with
partial derivatives of the Gaussian kernel) with appropriate subscripts. The two-
dimensional isophote curvature C(x, y; ai) can then be computed as:

C(x, tr,al) = M,L,L,

Lindeberg [9] proposes to multiply the curvature by the gradient magnitude raised
to some power, k, a natural choice being fc = 3, in order to give a stronger
response near edges. Examples of a Gaussian blurred image, its image gradient
and its isophote image curvature (multiplied by |V£|3/2) for different resolutions
are presented in figure 1.

2.2 Contour Curvatures

According to Mokhtarian and Mackworth [10, 11], a contour is represented by
its discrete contour control points, which can be parameterized in terms of two
functions x(s) and y(s) as {x(s),y(s)}, with 0 < s < 1. For closed curves, x(s)
and y(s) are periodic functions. The contour curvature K of a planar curve can be
expressed in terms of partial derivatives of x(s) and y(s) by

= x(s)y(s) - y(s)x{s)

( ( ) 2 + ( W

To obtain descriptions of the curve at varying levels of detail, the functions x(s)
and y(s) can be convolved with a one-dimensional Gaussian kernel for varying
spatial widths a.

A convenient way to represent a contour is using interpolating C2 polynomial
spline patches, which are very attractive tools for active contour models, as they
yield a continuous smooth description of the contour by approximating the set of
contour control points. Their analytic curvature can thus be computed not only
at the contour control points, but all along the interpolated contour, which is a
desirable extension of the classic active contour model. To allow for local control
and analytic computation of the spline elasticity and bending, a cubic C2 contin-
uous B-spline as presented in [2] can be used for representing the active contour
model. Cubic B-splines approximate series of n control points PQ • • • Pn-i, n > 3,
with a closed curve consisting of n polynomial curve segments. Each of the curve
segments is denned by four of the control points, where curve segment Q* is de-
fined by the geometric constraints Pj_i,Pi,Pi+1,Pi+2 and the blending functions
and polynomial coefficients:

Pi-l
Pi

^i+2

(7)
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Figure 2: Spline curvature K and isophote image curvature C along the spline for re-
sampling distance 5 = 4, a = 4 (left) and S — 8, a = 8 (right).

Differentiating the polynomials defined above allows for analytic computation of
the spline curvature as in equation (6) and the spline continuity or elasticity. The
linearity of Qi(t) causes a lack of smoothness for the spline curvature, which could
be overcome by using a higher-order spline polynomial. However, as higher-order
polynomials can cause unwanted oscillations and zero-crossings, they are not useful
for the purpose of this paper. We have found that B-splines prove to be sufficient
interpolants in terms of spline curvature and elasticity estimation.

2.3 Matching process

In order to match the B-spline curvature of a contour to the underlying isophote
image curvature, the B-spline curvature needs to be normalized by the distance of
the contour control points. Tests on an artificial image containing an object with
one major concavity showed that best matching results can be achieved when the
distance 8 between the contour control points corresponds to the spatial width
(X of the Gaussian kernel for the isophote curvature computation. Increasing the
distance between the contour control points achieves a smoothing effect of the
spline, as details are suppressed. Thus the B-spline has to be resampled with
respect to the scale by inserting new equidistant control points of distance 8 w a
along the original spline. Figure 2 shows the curvature profiles of the isophote
image curvature along the resampled spline as well as the spline curvature for two
different 8 and a. As can be clearly seen, the range as well as the shape of the
image and spline curvatures with respect to zero-crossings, points of inflection and
extrema can be easily matched. Thus an integration of the deviation of the spline
curvature from the image curvature seems highly appropriate.

B-splines have the following attractive properties which make them very useful
for shape representation and analysis as pointed out by Cohen and Wang [4], and
thus their application for active contour models is highly appropriate:
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• They are smooth and continuous interpolants of the active contour control
points representing the contour curve.

• They are locally controlled, which implies that local changes in shape are re-
flected by local changes of the B-spline parameters which makes them highly
applicable for local, quasi-parallel optimization techniques of the active con-
tour's energy functional such as the greedy algorithm or ICM.

• They have a generative nature, thus the curve can be generated at any detail
desired (i.e. by using different sampling rates) with respect to the required
image resolution.

• Their explicit polynomial representation allows for analytic differentiation
and curvature analysis of the contour which makes the problematic use of
discrete approximations of the contour elasticity and bending as investigated
by Williams and Shah [17] obsolete.

The curvature matching is integrated into the energy functional of the refined
active contour model which is presented in the following section. To allow for a
proper matching, the initial active contour is resampled with respect to the scale
used for the computation of the isophote image intensity curvature, which leads at
the same time to fewer contour control points for higher scales, as it is sufficient
to describe the contour with less points at lower image resolutions.

3 Refined Active Contour Model

In order to achieve the curvature matching discussed above, the classic energy
functional has to be modified with respect to the integration of the image curvature
and the whole spline contour. After the presentation of the refined active contour
model and its energy terms, the optimization strategy will be explained.

The incorporation of the spline model allows to analytically compute the spline
elasticity as well as the spline curvature not only for the contour control points, but
all along the spline. The model's internal constraints depend on the resampling
distance of the spline control points and thus on the directly related image scale
a. Thus, the discrete normalized sum of points along the i-th spline patch can be
computed for the elasticity and bending energy terms by

Eaa.(Qti<T) = ±r £ y/iiW+MW (8)
J V i t=0,AU

and
j t=i

Ebend(Qi;<r) = — J2 \K{t)-C(xi{t),yi{t);<r)\ , (9)
i Y i t=0AU

where Ni is the length of the spline patch Qj and the step size for the summation
is chosen as Atj = 1/iVj, and C is the isophote curvature of the image intensity
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function as defined in equation (5). As the sign of the isophote image curvature
depends on whether the object is dark on a light background or vice versa, this
fact must be included as o priori knowledge. Thus not only the amount of bending
of both spline and image curvature can be matched, but the bending behaviour
itself is taken into account.

The image energy term is defined analogously by incorporating not only the image
gradient, but the Chamfer distance transform image [3] of the zero crossings,
Dzc(x, y; a) which creates an attraction potential which draws the model towards
edges. The image term is computed like the internal energy terms along the spline
contour:

1
Eima9(Qi;<r) = — ] T \VL(xi(t),yi(t);a)\2 + £ z c (*<('), 2/i (*);*) (10)

1 V i t=o,AU

All energy terms are normalized within their local neighbourhood. The complete,
weighted energy functional of the i-th spline patch of the refined active contour
model is a linear combination of the internal and external energy terms:

u <r) = aEelas(Qi(s); a) + pEbend(Qi{s); a) + 7^imaff(Q<(s); a) (11)

This energy term is not only dependent on a because of the incorporation of the
scale space invariants in terms of image curvature, gradient and zero crossings, but
also because of the sampling distance 8 of the spline, which is directly related to
the spatial width a. As the i-th spline control point influences both Q, and Qi+i,
the sum of the bending, elasticity and image energy terms of both spline patches
has to be computed, thus

£»nafce(vi(s);<r) = Esnake(Qi(s); a) + Esnake{Qi+1(s); a) (12)

To optimize the presented active contour model with respect to the energy func-
tional defined above, a refined greedy algorithm was developed. While the original
algorithm by Williams and Shah [17] performs a sequential optimization and up-
dating of the model, this implementation uses a different, quasi-parallel optimiza-
tion approach. Within one iteration of the algorithm, every control point v<(s) is
compared to its direct neighbouring pixels in terms of its energy, but only after
the iteration the control points are updated to avoid sequential dependence.

4 Shape Description in Scale Space

The active contour model with the integrated curvature matching process pre-
sented in this paper was used as as method for shape description in order to
quantify an object's change of shape by regularizing the energy function according
to scale. A magnetic resonance image of the brain, whose invariants in scale have
been presented in figure 1, was presegmented to allow for an accurate initialization
of the active contour model. A series of implicit segmentation processes and op-
timizations with differently regularized energy functions with respect to scale and
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spline sampling distance were performed. The obtained optimization results were
quantified with classic shape descriptors such as area, perimeter and compactness,
and they were compared with the original contour with respect to segmentation
errors as well as using the Chamfer distance transform to quantify differences of
shape.

Original image a = 1

Figure 3: Optimization results for different spatial widths a .

a

1
2
4
8
16

Area
9216
8965
8516
9639
10599

Perimeter
4530
4037
3373
3260
3162

Compactness
2226
1817
1335
1314
943

Eabs

854
1101
1842
2569
2925

O'mean

0.918
0.1183
0.1985
0.2761
0.3143

i i

0.4602
0.5626
1.0176
1.7556
2.4629

Li

0.0110
0.0128
0.0224
0.0482
0.0604

Table 1: Evaluation of the regularized segments in terms of size of area, perimeter and
compactness. The segmentation error with respect to the initial contour is given by the
absolute number of wrongly classified pixels, Eab3, and the root mean squared error,
Emean- The Chamfer distance error evaluation is given by the absolute error L\ and
the root mean squared error Li. The area of the initial segment is 9306 pixels, with
perimeter 5458 pixels and compactness 3201 .

Figure 3 shows the original contour as well as the optimized contours for three
different levels of scale. The quantitative evaluation of the regularized optimization
results are presented in table 1 and show a continuous decrease in segmentation
quality, perimeter and compactness. The area is at first slightly decreasing due
to loss of detail for increasing a, but for very low resolutions (high scales), it is
drastically increasing because the contour is blown up in scale. The active contour
obviously adjusts better to the object for finer scales, as for coarser scales smaller
features are disappearing, thus the snake is attracted by stronger features from
far away or even performs short cuts in order to remain elastic. However, points
of high curvature tend to be preserved even for large scales due to the enforced
adjustment of the snake bending to the underlying isophote image curvature.

5 Discussion

We have presented a new and effective method applying an active contour model
for shape description, the novelty lying in its integration of multiscale differential
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invariants in terms of minimizing the deviation of the contour curvature from the
underlying isophote image intensity curvature and optimizing the model's attrac-
tion to the smoothed gradient and the zero-crossings of the Laplacian-of-Gaussian.
The resulting hierarchy of shapes for various scales allows to describe an object
at multiple resolutions. We evaluated the shape optimization results with simple
shape descriptors like the region size, perimeter and compactness, and were able
to evaluate the segmentation quality by computing the segmentation error when
comparing the optimized shape with the initial object. A special emphasis was
put on the rate of change of the shape under change of scale and on the adjust-
ment of the contour curvature to the isophote image curvature. The results were
very promising, as most of the chosen shape descriptors showed linear behavior.
This novel approach for shape analysis can now be applied not only to perform
quantifying measurements on a single shape, but for shape comparisons between
different shapes as well.

The presented active contour model for shape description using differential invari-
ants in scale is currently investigated for its clinical relevance in future work, as
one major medical task in image processing is the quantification of deformations
of the brain in certain diseases such as epilepsy. This ability to produce quantita-
tive shape description metrics for distinguishing between normals and abnormals,
as well as matching to atlases, appears to be of crucial importance for clinical
applications.
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