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Abstract

This paper concerns the recovery of intrinsic and extrinsic camera parameters using
perspective views of rectangles. Several algorithms are described. The intrinsic
parameters (aspect ratio, effective focal length, and the principal point) are
determined in closed-form using a minimum of four views. The recovery of the
intrinsic parameters and the rotation angles is independent of the size of the
rectangles. The absolute translation is recovered by knowing either the length of one
side of the rectangle or the area of the rectangle or any other absolute information.
The new method for recovering extrinsic parameters is shown to be significantly
more robust than the widely used method based on vanishing points. Experiments
with both synthetic and real images are presented.

1 Introduction
Many computer vision applications require knowledge about the optical characteristics
(the intrinsic parameters) and the orientation and position (the extrinsic parameters) of the
camera w.r.t. a reference frame (often referred to as the world coordinate system). The
determination of such parameters (camera calibration) is a fundamental issue in computer
vision, and has been studied extensively [10].

A typical camera calibration method uses a specially constructed and often
complicated reference object or calibration object. The calibration object is usually
marked with points (the control points) whose 3-D coordinates are known very accurately
in a world coordinate system. Images of the calibration object are taken by the camera to
be calibrated and processed to determine the image coordinates of the control points. The
correspondences between the known 3-D world and 2-D image coordinates of the control
points are then used to recover the intrinsic and extrinsic camera parameters [10-11].
While such approaches can deliver accurate camera parameters, they have serious
drawbacks in practical applications. For example, in vision-based road traffic surveillance
applications [19-21], it is impractical to use complicated calibration objects and
alternative methods are more appropriate [12].

Recent work on camera calibration indicates that camera parameters may be
determined without using any calibration objects [16,13-15]. For example, Maybank and
Faugeras [16] have shown that given point correspondences in several views of a scene
taken by the same camera, the intrinsic camera parameters can be determined by solving
a set of so-called Kruppa equations [16-17]. The solution of the general Kruppa equations
is rather time-consuming and often leads to highly noise-sensitive results [13]. More
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stable and efficient algorithms are reported in [13-15], but the algorithms require
constrained (e.g., pure rotation [13]) and/or known camera motion [14-15]. Such
requirements are difficult to meet in practical applications such as road traffic
surveillance. Although camera self-calibration methods such as those mentioned above
provide interesting and potentially very valuable alternatives to conventional methods,
the state-of-the-art does not seem to allow convenient camera calibration for practical
applications.

A number of camera calibration methods [2-9, 12] have recently been reported
which either seek calibration cues (e.g., vanishing points [1] due to parallel lines) directly
from the scene or only require very simple calibration objects (e.g., simple planar shapes,
cubes, etc.). Such methods do not have the problems of current self-calibration methods,
and may easily be implemented in practice. In this paper, we present a camera calibration
method which uses images of rectangles. For completeness, the recovery of both intrinsic
and extrinsic camera parameters is discussed. Because of the simplicity and ubiquity of
rectangles, the current method is advantageous in practice. Rectangles have previously
been used by Haralick [2] and Chang et. al. [5] but they assume known intrinsic
parameters. For the recovery of extrinsic parameters, several techniques are described in
this paper. The new techniques are shown to be much more robust than the widely used
technique based on vanishing points [3-4, 6-9, 18].

2 Notations
The imaging geometry assumed in this paper is depicted in Fig. 1. The camera is a pinhole

Y

Figure 1: Illustration of imaging geometry.

camera with no lens distortion. The camera image plane u'-o'-v' is at a distance k in
front of the focal point and is orthogonal to the optical axis. The camera image plane is
spatially sampled along the horizontal and vertical directions to store a camera image
frame as a raster image frame or simply an (image) frame in a computer. The raster image
plane is shown in Fig.l as u-o-v, with the abscissa axis pointing rightwards and the
ordinate axis downwards. The origin of the raster image plane is at the top-left corner of
the image frame. The camera image coordinates («', v') and the observable raster image
coordinates (u, v) are related to each other by the following equations:

u' = au (u - M0) ; V = ccv (v0 - v) (1)

where au and 0Gv are the horizontal and vertical scaling factors, and («0, vQ) the raster
image coordinates of the origin of the camera image plane. These four variables only
depend on the characteristics of the imaging system.

The camera coordinate system (CCS) is initially aligned with a world coordinate
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system (WCS). To allow the camera to view the 3-D world from an arbitrary viewpoint,
the CCS is first rotated around its X-axis by an angle ([> (the tilt angle), then around its Y-
axis by an angle \\i (the roll angle), and finally around its Z-axis by an angle 0 (the pan
angle). The rotation is followed by a translation Tx along the X-axis, T along the Y-axis,
and T along the Z-axis. The six variables (j), i|/, 0, Tx, T and Tz are the extrinsic
camera parameters.

From now on, lowercase bold letters are used to denote (row) vectors. For
example, we use pA to represent the camera coordinates of a world point A, and qa to
represent the camera coordinates of the image a of point A. If a is located at (wfl, vfl)
on the raster image plane, qa is given by

q = ( a (u -un) k a ( v n - v )) (2)

By definition, the focal point O, the image point a, and the world point A are collinear
on the line of sight. Given the image position of a, the direction of the line of sight is
uniquely determined and is given by the following unit direction vector

9a = Qal\9a\ (3)

Let the distance from the focal point to point A be XA. Then pA is given by

PA ~ XAQn \'J

where X. is often called the range of point A.

For a given rectangle, we name its four corners in a clockwise manner as A, B,
C, and D, and its centre as H. The image of the rectangle is similarly labelled (see Fig.2).

m

(a) " ' (b)

Figure 2: Labelling of a rectangle (a) and its image (b).

In the following two sections, we discuss the recovery of the intrinsic and the
extrinsic camera parameters using perspective views of rectangles.

3 Recovery of intrinsic parameters
Under perspective projection, the parallel sides of the rectangle AB and CD, and AD and
BC intersect at vanishing points m and n respectively [1] (see Fig.2(b)). According to the
properties of vanishing points, the lines connecting O (the focal point) and m, and O and
n are parallel to AB (CD) and AD (BC) respectively. The unit direction vectors along Om
and On are simply qm and qn. Since AB LAD, we then have

? m ' ? n = 0 (5)

From (2), (3) and (5), we obtain
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al («« " «o) K - «o) + ̂  + «J (vo - V> (vo - v«) = 0 (6)
a ^

By letting a = — and / = —, we rewrite (6) as
U V

-2 («« - «o> <«« - «o) + / + ("o " vm) (v0 - vn) = 0 (7)
a

where a (called the aspect ratio), / (called the effective focal length), and (uQ, vQ) (the
principal point) are the four intrinsic camera parameters that are to be determined in this
paper.

3.1 The algorithm

Equation (7) states that from a perspective view of a single rectangle, one can derive a
constraint on the four intrinsic camera parameters. Hence for a total of N perspective
views of a single rectangle taken by the same camera with the same parameters, there are
N such constraints:

4 ( M « . « - B 0 ) ( « » , « - « 0 ) + / + ( v 0 - v m , « > ( V 0 - v i , , « ) = ° ; ' = 1.2,...,N (8)
a

Clearly, N must be no less than 4 to ensure that the intrinsic parameters can be determined
from the constraints. The minimal number of views can be reduced from 4 to 3, 2 or 1 by
placing multiple rectangles in the scene. For example, when the calibration object is a
cube [8, 18], one only needs two views of the cube (since a single general view of a cube
is equivalent to three views of a rectangle). The multiple rectangles do not have to be of
the same size since the constraints do not depend on the size of the rectangles.

The constraint equations (8) are nonlinear in the four unknowns. However, a
simple closed-form solution is possible. By subtracting the first equation (or any other
equation) of (8) from the other N - 1 remaining equations, we obtain

t (oc2vo) + C.cc2 = £>•; i = 2,3,...,N (9)

where

Ai= (Um,i-um,0 + (Un,i-Un,0
Bi= (Vm,i-vm,0 + (vn,i-vn,0
Ci = Vm,\Vn,\-Vm,iVn,i

Di = Um,iUn,rUmAun,\

The N - 1 equations in (9) can easily be solved by using the standard linear least squares
technique to get UQ, a vQ and a , hence three of the four unknowns. The remaining
unknown, the effective focal length / , can then be determined by substituting w0, vQ and
a into (8).

3.2 Experimental results

The algorithm was applied to recover intrinsic camera parameters from real images.
Seven views of a rectangle on a cardboard were taken. The images were of size 768x576
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pixels and are shown in Fig.3. The Plessey corner detector [22] was applied to each image
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Figure 3: Seven perspective views of a rectangle. Images are of size 768x576 pixels.

to locate the four corners of the rectangle. The output of the Plessey corner detector was
then used by the algorithm to determine the four intrinsic camera parameters. The
recovered values are as follows

u0 = 380.16; vo = 290.98; a = 0.98; / = 1093.40 (11)

Since the ground-truth was unknown, we could not assess the accuracy of the recovered
parameters quantitatively. Intuitively, however, the determined values appear reasonable.
For example, the recovered principal point is close to the centre of the image, and the
aspect ratio close to 1. The intrinsic parameters obtained by the algorithm have also been
used successfully in structure, pose and motion recovery (see next section and also [23]).

4 Recovery of extrinsic parameters
Once the intrinsic parameters are determined, the six extrinsic parameters may be
recovered from a single perspective view of a rectangle in a number of ways. Two
methods are described in the following. The first method is based on vanishing points (the
VP method) and the second on angle constraints (the AC method). The WCS is defined
on the rectangle as illustrated in Fig.4. The transformation from the WCS to the CCS

4Zw

A / . - -
^ D

,C

Figure 4: The world coordinate system defined on a rectangle.

comprises a rotation Rwc followed by a translation twc. The rotation may also be
represented as the pan, tilt and roll angles.

4.1 The VP method: recovery using vanishing points

For calibration objects having parallel lines, a widely used method is based on vanishing
points. Examples of methods of this kind may be found in [3-9, 12, 18]. For the sake of
completeness, a similar method is described here.
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Given the vanishing point m of AB and CD, and n of AD and BC, we can easily
determine the unit direction vectors ry and fx (expressed in the camera coordinate
system) along the Yw- and the Xw-axis. They are simply rx = qn and fy = qm. The unit
direction vector along the Zw-axis is determined by the cross-product of rx and ry, i.e.,
fz = rxxfy. Hence the rotation matrix Rwc is given by

D _ \T J j \ - \j J ,„ „ l\
"we ~ \rx ry rzj \qn qm(qnxqm)j

From the known raster image coordinates of the four corners, we can easily compute those
(uh, v^) of the centre H of the rectangle. These allow us to determine the unit direction

vector qh along the line of sight of H. The translation vector twc is simply the camera
coordinates of H and is therefore given by

where the range parameter %H is a unknown scaling factor.

Once the orientation and position of the rectangle are known, the camera
coordinates of the four corners can easily be determined. The equation (expressed in the
camera coordinate system) of the plane supporting the rectangle is defined by

( $ B x 3 m ) « 0 » - ' w c ) = 0 (14)

where p is the vector representing the camera coordinates of a point on the supporting
plane. Then the camera coordinates of a corner point are simply the intersection of the
supporting plane and the line of sight of that point. For example, the coordinates of corner
A are given by the following

PA = ; —la (15)
Qn*<lm' la

and those of B, C and D are computed similarly.

The scaling factor 'kH in (13) and (15) may be determined by knowing one of the
following: a) the length of one side of the rectangle; b) the area of the rectangle; or c) the
absolute range of one of the corners.

4.2 The AC method: recovery using angle constraints

The VP method often depends critically on the accuracy of the vanishing points [7].
Unfortunately, the accuracy of the vanishing points cannot always be guaranteed,
particularly when the perspective distortion is not severe. For example, when the depth
change across an object is small compared with the nominal depth of the object,
perspective projection is very close to scaled orthographic projection. In this case, parallel
lines in 3D project to almost parallel lines on the image plane, and the detection of
vanishing points is highly unstable. Therefore, from the practical point of view, a method
not involving the use of vanishing points is perhaps preferable. Such a method is
presented in the following.

Let the position vectors (i.e., the camera coordinates) of the four corners be pA,
pB, pc and pD. From (4), they are given by
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PA = \*a> PB = M * ; PC = Xc4c> PD = X^ (

where XA, XR, Xc and XD are the range parameters that are to be determined in the
following.

From the simple fact that the four angles of a rectangle are all right angles, we
have

(PA ~ P B P A P D B A B C

( P C ~ P B > * ( P c ~ P a > = 0 ( P P > * ( P P ) 0

By substituting (16) into (17), we obtain

where Q- = qt • Qj. The absolute values of the four unknown range parameters cannot
be determined from the above four equations since the equations are homogeneous in the
unknowns. We then arbitrarily set X. - 1 to determine the relative values of the range
parameters. With X. = 1, Equations (18)-(21) become

(24)

From (22) and (25), we get XB and Xc expressed in terms of XD:

. 6 A - ' . . QadXO-X2
D

B " QbdKK-Qab c~ Qac-QCdxcxo . ( }

By substituting (26) into (23) and (24), we get respectively

C4XD +C3XD+ C2X\ + Cl XD + C0 = ° (27)

and

B4X
4
D + B3Xl + B2X

2
D + BlXD + B 0 ^ 0 (28)

where the coefficients of the polynomial equations are computable from known Qi .
From (27) and (28), we can get a third-order polynomial equation on XD:
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•D + D0 = 0 (29)

where D( are known coefficients. The third-order polynomial equation can easily be
solved to obtain three possible solutions for XD. However, the valid solution should
satisfy (27) or (28) and should be positive. Such constraints in general eliminate two
solutions, leaving only one valid solution for XD. Once XQ is known, XB and Xc are
computed from (26). The unknown global scale in the range parameters may be fixed by
knowing the length of one side of the rectangle or the area of the rectangle. The known
range parameters can be substituted into (16) to obtain the camera coordinates of the four
corners. The camera coordinates are then used to determine the rotation matrix Rwc and
the translation vector f •

\(PD~PA
+ •

\PD~PA\ \PC~PB\

r>=2y 2V\PB-PA\ \PC-PD\

rz=rxx ry

Kwc-\rx ry

(30)

It can easily be shown that Rwc defined above is independent of the size of the rectangle.
This is consistent with previous results [2].

4.3 Experimental results

Experiments were carried out to compare the performance of the VP and the AC method
using known parameters of a calibrated camera in an outdoor traffic scene [20-21]. The
projection of a rectangle was computed and the ideal image coordinates of the four
corners were then perturbed by values randomly chosen from a given interval
[—£, + e] . The relative errors of the extrinsic parameters recovered by the two methods

as functions of e are shown in Fig.5. It can be seen that the AC method performs
significantly better than the VP method, particularly for the pan angle and the translation.

The performance of the AC method was further assessed by applying it to the
seven images shown in Fig.3. Since only the size (length and width) of the rectangle was
known, the AC method was used to recover the dimension of the rectangle and the output
was compared with the ground-truth. The results are summarised in Table 1. The intrinsic

Image

Length

Width

Fig.3(a)

140.08

123.93

Fig.3(b)

140.44

123.61

Fig.3(c)

140.47

123.58

Fig.3(d)

140.92

123.19

Fig.3(e)

139.64

124.32

Fig.3(f)

141.22

122.92

Fig.3(g)

140.36

123.68

Table 1 : Recovered dimension of the rectangle shown in Fig.3. The ground-truth is
Length=140mm and Width= 124mm.
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Figure 5:

—
1 2 3 ^

Noise Level (pixels)

Relative errors of the six extrinsic camera parameters recovered by
the VP algorithm (grey) and the AC method (dark).

camera parameters used in the recovery were those obtained by the algorithm described
in Section 3.1. It can be seen that the dimension recovered from all images is very close
to the ground-truth, indicating good performance of the AC method and the algorithm of
Section 3.1.

5 Conclusions
We have discussed the recovery of intrinsic camera parameters based on 4 views of any
rectangles and that of extrinsic camera parameters using a single perspective view of a
rectangle. Several algorithms have been described. The simplicity and ubiquity of
rectangles greatly facilitate efficient and convenient implementation of the algorithms in
practical applications. It has been shown that the intrinsic parameters can be determined
in closed-form using a minimum of four rectangle views. The recovery of the intrinsic
parameters and the rotation angles is independent of the size of the rectangles. The new
method for recovering the extrinsic parameters has been found much more robust than the
conventional method based on vanishing points. Experiments with both synthetic and real
images have been presented to demonstrate the performance of the algorithms.
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