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Abstract

The paper reports an interactive tool for calibrating a camera, suitable for use in
outdoor scenes. The motivation for the tool was the need to obtain an approximate
calibration for images taken with no explicit calibration data. Such images are
frequently presented to research laboratories, especially in surveillance
applications, with a request to demonstrate algorithms. The method decomposes the
calibration parameters into intuitively simple components, and relies on the
operator interactively adjusting the parameter settings to achieve a visually
acceptable agreement between a rectilinear calibration model and his own
perception of the scene. Using the tool, we have been able to calibrate images of
unknown scenes, taken with unknown cameras, in a matter of minutes. The standard
of calibration has proved to be sufficient for model-based pose recovery and
tracking of vehicles.

1 Introduction

Any practitioner of 3D vision knows that camera calibration is a time-consuming chore
[5]. Many methods for obtaining a description of the 3D structure of a scene depend
critically on having an accurate camera model. In the case of a simple pin-hole camera
this specifies the 6 extrinsic parameters (the position and orientation of the camera in
some world coordinate system) and the 4 intrinsic parameters (the principal point in the
image, where the ray through the focus is orthogonal to the image, the focal length of the
projection, and the aspect ratio of the discrete sampling of the image). Armed with such
information, the small differences between images taken with cameras in different
positions can be used to recover the depth of points in the scene, either from multiple-
camera slereopsis or ﬁ'om camera movement.

Our own work to recover descriptions of traffic scenes using static monocular
cameras (e.g. [2]), also relies on camera calibration, but requires considerably less
accuracy. The main task in traffic surveillance applications is to recover the pose of rigid
objects, such as vehicles, with respect to the camera; this is equivalent to recovering the
camera’s 6 extrinsic parameters, referred to a coordinate frame centred on the vehicle.
[The image is also, of course, affected by the 4 intrinsic parameters of the camera, but
these are usually calibrated before the pose recovery function.]

Even the recovery of the 6 extrinsic parameters for a rigid object in
unconstrained view is a daunting task. Fortunately, road traffic is strongly constrained:
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Figure 1 Typrcal traffic scene, with parallel road markings 1d:ﬁed

under normal circuinstances all vehicles move in contact with the road surface, and this
reduces their freedoms to (x,y) on the road plane, and the rotation angle about the vertical.
This “ground-plane constraint” (GPC) enormously simplifies the vehicle pose recovery
problem, and the reduction to only one rotation makes quasi-linear methods feasible [4,6].
But to make use of the GPC we must first know the position of the ground-plane with
respect to the camera (or equivalently, the position and orientation of the camera in a
world coordinate frame (x,y,z) placed at some known point on the road).

We have frequently been asked to demonstrate our traffic understanding
methods on video tape supplied by potential end-users. These tapes may have been made
specially, or might come from existing traffic surveillance cameras, however, they never
come with adequate camera calibration data. Figure 1 gives a still from a typical example.
Our first problem is to calibrate the camera, so that the position of the ground-plane is
modelled with sufficient accuracy for our pose recovery and tracking algorithms.

This paper reports an interactive tool we have developed for the task. It relies on
decoupling the process into a sequence of simple operations, which are intuitively
obvious, even to a naive user. The camera calibration tool has major practical
significance. Our previous technique (using traditional methods, discussed below)
requires an accurate model of the scene which may take many hours to prepare.
Subsequent calibration of the camera then typically takes a highly skilled operator about
30-60 minutes to perform. The new technique relies on the user’s instinctive perception
of the scene, and can be done by a novice after minimal training. It requires no explicit
scene model and takes a couple of minutes to carry out. It may used in a large number of
situations where the position of a camera is required with respect to a planar surface.

2 Camera calibration

The use of the GPC requires the position and orientation of the camera to be known with
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respect to a world reference frame. Conventionally, camera calibration is done by fitting
a known 3D model of the scene to the image, and solving the resultant set of equations to
recover the perspective projection matrix of the imager. In a laboratory setting, this is
usually accomplished by use of a specially constructed calibration grid [5]. In our work
with natural scenes we have previously built 3D models of the road markings and visible
landmarks on building for this purpose [3]. However, traffic scenes are difficult to model
without recourse to a detailed survey, which is both expensive and likely to disrupt the
traffic flow. We have therefore developed a more qualitative approach to camera
calibration, using interactive software tools. This approach is less accurate than can be
achieved from a well-surveyed scene, but since it relies on only two arbitrary
measurements on the roadway, it is far more applicable in practice.

Our interactive method does not determine the principal point, or the pixel aspect
ratio. In practice, the former is rarely far from the centre of the image, and the latter is (in
principle) obtainable from knowledge of the CCD geometry and the frame-store sampling
rates. Small errors in these estimates do not significantly affect our processing, and in
practice can be ignored. However, both these parameters are properties of the sensor and
the frame-store, so they normally remain constant. If necessary these could be estimated
more accurately using a laboratory rig (e.g. by viewing a square target to determine the
pixel aspect ratio). Such tests have shown the assumptions to be valid for our cameras. Of
the intrinsic parameters, only the focal length then remains to be determined.

To recover the extrinsic parameters, we start by identifying two parallel stretches
of road markings, from which we can define the vanishing point in the image for all lines
parallel to the road, see Figure 1. We then set the focal length to a nominal value, and
place on the image of the scene a simulated reference model, comprised of a rectangular
grid, with attached normals, whose projection in the image is always constrained to lie
between the parallel lines. The distance from the camera to the model is also set to an
arbitrary value and the model is scaled so that it fits between the two parallel lines. The
operator then uses a slider bar to roll the model about an axis through the vanishing point,
until the model appears to be square with respect to the road. Note that to a fair
approximation, the visual effect of this rotation is independent of the assumed focal length
and distance of the camera from the coordinate frame. The operator’s visual task turns out
to be surprisingly simple, since perception is dominated by the frame of reference
instinctively recovered from the image of the roadway, and it is fairly easy to identify
when the calibration model looks square. Figure 2(a-c) gives an impression of the
perceptual task - at this stage the vertical lines should be ignored, since these are affected
by the assumed focal length and height.

This procedure completely locates the ground-plane, given the initial
assumptions of camera focal length and scale. Only the two assumed values now remain
to be determined. The tool has a second interactive control which is used to set the focal
length. Each time the focal length is changed the previous calculations are repeated, using
the vanishing point and the rotation already set. As the focal length is varied, the tilt angle
of the ground-plane and the scale factor continuously co-vary, as illustrated in Figure 3.
The scale factor and focal length can now be set either by eye, together with knowledge
of the camera height above the ground plane or of a single known distance on the ground,
or objectively using two measured distances on the ground plane.
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Figure 2 Calibration model rolling -5° (a) through the perceived veridical (b)
to +5° (c) about a line through the vanishing point of the road.
The final calibration after estimating the scale and focal length is shown in (d).

In the first method we manipulate the focal length until the perspective distortion
visible in the calibration model (especially the fact that the normals to the base do not look
vertical) becomes comparable to that seen in the image. This then leaves the scale factor
to be set using knowledge of one absolute measurement. This could be the height of the
camera above the ground plane or may be obtained by identifying any one length on the
ground-plane, typically by drawing a line across the roadway (perpendicular to the
parallels, as indicated by the calibration model), and specifying its real-world dimension
by means of a dialogue box.

The second, and more accurate, way to estimate the focal length and scale factor
uses two measurements of length on the ground-plane. Although these can be taken in
arbitrary directions, it is convenient (and more accurate) if these line up with the
calibration model. In Figure 2 we use a longitudinal distance given by white line
markings, and a lateral distance, given by the lane width; at least in principle, these
conform to highway standards and are known in advance. We draw these two lines on the
image and real-world dimension the longitudinal line is set by means of a dialogue box.
This is then used to compute the scale factor and the apparent length of the second line.

The apparent size of the second calibration line is continuously displayed and the
user adjusts the focal length until this too is correct. The apparent size is monotonic with
the focal length so it would be possible to perform this last step automatically. However,
given the interactive nature of the tool, this is superfluous.
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Figure 3 The interpretation plane of an image line showing short (a) and long (b)
focal lengths, and their effects on the apparent tilt of the ground and the apparent length
of a calibration line on the ground; here, the camera height has been kept constant.

The result is shown in Figure 2(d) where (by way of confirmation) the verticals
of the calibration model now seem well-aligned with the lampposts - compare Figure 2(b)
and 2(d). The whole process takes a few minutes. It gives a standard of calibration which
has proved quite sufficient for our purposes, and has been used successfully for pose
recovery and tracking algorithms which rely on knowledge of the ground plane (e.g. [5]).

The main benefit of the approach is that interactive camera calibration requires
minimal work at the traffic site. It also decouples the camera parameters in a way that is
very easy to appreciate - even by a layman. Since the technique can be used by non-
specialist staff after minimal training, it removes a major operational difficulty that stands
in the way of practical applications of vision systems for traffic analysis and other
surveillance tasks.

3 Performance

Figure 4 illustrates a laboratory scene, used to assess the accuracy of the method. A piece
of A3 paper was placed on the ground of our model traffic scene. The camera was
calibrated using the long edges to identify the vanishing point, and the lengths of two
perpendicular edges to calibrate distance and focal length. Following calibration, a ruler
(measuring 485 mm, and just visible on the road on the left in Figure 4) was placed on the
ground to appear at a number of positions in the image. The scale tool was then used to
measure the apparent size of the ruler in 3D. Our results varied between 480 and 495, and
showed no systematic bias from front to back of the scene, indicating very good
calibration of the ground-plane with respect to the camera. Any residual error is probably
explained by imprecision of identifying the ends of the ruler in the image.

The examples described above might be thought particularly favourable to our
method for a number of reasons. Firstly, the convergence of the parallel lines is fairly
conspicuous, and the vanishing point can be determined accurately. Secondly, the
vanishing line is approximately in the direction of the camera tilt, so that the rotation of
the calibration model is easy to judge. Finally, the calibration lengths are positioned so
that (up to scale) one is most affected by rotation (the lateral) and the other by focal length
(the longitudinal).
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Figure 4 Laboratory scene (of our model Figure 5 Calibration of a non-ideal view
road layout), showing the calibration (see text).
model fitted to a piece of A3 paper.

Figure 5 shows a view of our road model designed to be less favourable, in which
the parallels converge weakly, and lie across the line of camera tilt. The video tape is in
the foreground to improve the observer’s perception of scene geometry, which is essential
to the method. Removal of the first two supposed advantages proved to cause no
difficulty, but the placement of the calibration lines is more important. Two different pairs
of calibration lines are illustrated. The first (shown as thicker black lines in Figure 5) are
well suited to the task, and yielded the calibration indicated by the model. The second pair
of calibration lines (shown dashed) are not useful, since having set the rotation, they co-
vary with variation of the focal length too closely, and thus fail to constrain the calibration
of focal length.

4 Discussion

The representation of the camera geometry used in the calibration process is simple and
intuitively pleasing. This is a major advantage in an interactive tool, intended to be used
by operatives rather than vision scientists. The method exploits the perceptual abilities of
the operator to determine a vanishing point, and to set the rotation angle. Two objective
measurements then determine the distance and focal length. These parameters interact in
a way that is difficult to control, given an arbitrary frame of reference. The simple tricks
of constraining the calibration tool to lie between the identified parallels, and of covarying
focal length and scale, make the task easy to perform.

The tool was initially motivated by the need to calibrate traffic scenes, where
long parallel lines are common. It has effectively overcome a problem which recurs every
time a new video sequence needs to be considered in our work. The same problem is
encountered in many surveillance applications. However, parallel lines are common (or
easy to generate) in almost any visual scene, so the tool could have widespread
application.

The mathematics of the technique is simple, and bear comparison with the
method of calibrating a scene from a known rectangle, reported by Haralick [1]. However,
in our case, instead of finding two perpendicular pairs of parallel lines to determine the
orientation of the plane, we use one pair of parallel lines - known parallels are more
common in natural scenes than rectangles, so our method is more useful for surveillance
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applications. We then make use of any two linear measurements to recover both the scale
and the focal length, whereas Haralick used the known size of the rectangle, and only
recovered scale (in fact his closed-form approach to the problem makes it very difficult to
consider focal length as a variable).

An additional important advantage of our interactive method, is that it becomes
very easy to see how effective the calibration is, and to make iterative adjustments
accordingly. Methods based on the closed-form computation of parameters, often hide
any calibration errors (due, perhaps, to poor data) within the mathematics, in an all-or-
none way, and do not admit intelligent, opportunistic intervention.
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Appendix: Geometrical analysis

We define the camera coordinate system with the origin at the centre of projection, and x
horizontal, z vertical and y perpendicular to the image plane. The image plane is some
distance f (the focal length) in front of the centre of projection. Our task is to construct a
new coordinate system whose x-y plane corresponds to the ground plane,

We identify two lines in the image which correspond to parallel lines on the
ground plane. The vanishing point in the image is given by the row vector:

Vym= I:uvaJ

Because of our choice of the camera coordinate system this also defines the vanishing
direction. The two parallel lines lie in the ground-plane which must therefore contain the
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Vanishing Point
in the Image

Ground plane

Figure 6 The interpretation plane of one of the vanishing lines. The ground plane
coordinate system is constructed so that Gy, is in the vanishing direction, G, and G, are
in the ground plane, and the origin is on the ray through the centre of the line.

vanishing direction. Consider an arbitrary point on the image (for example the midpoint
of the left-hand line segments used to define the parallel lines), given by:
o 1]

We use this as the origin of a set of coordinates on the ground plane, which is at

some as yet unknown distance s along the ray defined by o i.e.
G, =s0o= [suo sf sv,

The coordinate frame on the ground plane is defined by orthogonal axes G, G,

and G,. We choose Gy to correspond to the vanishing direction with G _ in the ground

plane, and hence G, is normal to the ground plane. We obtain these directions by

considering two rotation matrices, the first of which takes the camera y-axis into the
vanishing direction. The general form for a rotation of angle 0 about a arbitrary axis

defined by the direction cosines /, k and [ is given byl

h%(1 - cosB) + cos® hk(1 - cosB) +Isin® hi(1 - cos6) — ksin®
hk(1 - cosB) — Isin® k(1 - cos®) + cos® kI(1 - cos) + hsin®
hi(1 - cos) + ksin® kI(1 - cos®) - hsin® I1*(1 - cosB) + cosd
In our case 0 is defined by the inner product between the camera y-axis and the vanishing
direction
cos® = §-9

where ¥ is the normalised vanishing direction. The direction cosines are thus determined

1. Transformations are represented by left acting matrices.
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by the normalised outer product between the y-axis and the vanishing direction.

VAP
el = 2=
15 A9l
hence
v -y
-4 X
h = k=20 I-ﬁ CO‘SB-Vy
vi+v vitv;
also

2.2 J 2
VoV, = l-vy—smﬁ
Therefore the rotation matrix becomes

2
l-av, -v, -av v,

where

T A =
lvy y

We still have freedom to rotate the coordinate frame about vanishing direction. This
second rotation can be represented by the matrix

cosp 0 —sing
01 0
sinpp 0 cosg
where @ = 0 corresponds to the (arbitrary) direction of G, due to the first rotation.

The angle ¢ is determined by user interaction (see Figure 2 of main text). The
transformation matrix then becomes

2 . . 2 .
(1-avy)cosp+av v,sing v sing—v.cosp - (1-oav;)sing—av v cose
Vx Vy Vz

(1- avi) sinp—av v,cosp —v,sinp-v,cosp (1- owf) cos@ — av v sing
The rows of this matrix are the required axes G,, Gy and G,. The top row is the G -axis
in the ground plane

T
(1- ow_f) cosp + owxvzsincp "
G, = v,sing — v, cos@

D w
= (1-aw,) sinp - av_v,cosp
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The middle row is the Gy-axis, the vanishing direction as constructed. Finally the bottom
row is the G, -axis normal to the ground plane.
T
(1- av:) sing — av v, cos®
G, = - v, sing—v,cosp
(1- av?) cos@ — av v, sing
Having defined the ground plane it is straightforward to map any point on the

image p to an equivalent point on the ground plane P by considering the intercept of the
ray with the ground plane given by the equations

P = Ap
and
P:-G,=G,G,
solving for A we get
A= GU-GZ
PG

If p is a point on the second of the lines used to define the vanishing point then
we can compute the separation of the parallel lines on the ground plane as

G -G
0 Zz
[G"_ PG P) R
which is linearly dependent on the unknown scale factor s. This distance is used to scale
the calibration model so it fits between the parallel lines (see Figure 2). Alternatively, the
height of the camera above the ground plane is given by G, - G, which is also linearly
proportional to the unknown scale, so if the camera height is known, the scale can be
determined for a given focal length.

It is usually easier to arrange that some length on the ground-plane is known, and
this too can be used to determine the scale factor. The two end points are marked on the
image and are then projected onto the ground-plane with an assumed scale of 1 as above.
This corresponds to the physically impossible, but mathematically useful, situation of the
ground plane intercepting the image plane at the point 0. The scale is then determined by
the ratio of the apparent length and the user supplied measurement.

dreal

S = —

app

Thus for an assumed focal length, the ground plane is completely determined,
and the absolute position of any point on the computed ground plane is easy to compute.



