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Abstract

We describe an algorithm which uses affine transfer of the fixation point in
a stereo pair to obtain stereo fixation of a moving object. The method runs
in real-time using corners tracked temporally -and in stereo. The fixation
point is transferred to new left and right views using affine structure from
four views — old left and right and new left and right. We also present
the singular value decomposition as a means by which all possible feature
points contribute to the transfer, providing immunity to poor choice of basis
features. Early results are presented for the method, showing its speed and
reliability.

1 Introduction

The expressions active fixation, smooth pursuit, and gaze holding are synonymous
terms for the process by which the attention of an active viewer is maintained on a
target of interest. The benefits of active fixation are numerous and have been well
documented in the active vision literature. Clearly the most obvious advantage of
such tracking is that it extends the period during which a target may be observed.
But the benefits run deeper, notably enabling the use of an external or object
centred reference frame which is better suited to many computational tasks [1, 2]
than the viewer-centred coordinate frames employed in much traditional vision
research. In this paper we use the theory of affine transfer in a binocular fixation
algorithm which, among other virtues makes explicit such an object centred frame.

Consider a set of views of an object with a number of feature correspondences
between the views. Given a novel view, and the image positions of a small number
of the features, various researchers have shown that the image positions of the
remaining features may be uniquely computed in the novel view [3, 4]. This
novel view construction process is known as transfer. We applied this process to
the problem of monocular tracking in [5, 6]. Affine transfer (i.e. transfer under
assumptions of affine viewing conditions) was used to determine the image position
of the fixation point in a new view of the target, using a set of corner feature
correspondences with previous views. This novel tracking method has several
advantages over other tracking methods; it is view-point invariant, insensitive to
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local occlusions, and invariant to changing camera intrinsics. Importantly the
method requires no prior model of the target appearance, but by-products of the
fixation point transfer are the computation of an object-centred affine frame, and
the target’s structure relative to the frame. While monocular cues are sufficient to
obtain reliable fixation [5], there are a number of reasons for wanting to extend the
work to binocular tracking. In particular using stereo, it is possible to compute
relative depth, and (with calibration) absolute depth and 3D trajectories of targets.
Further, a binocular system is potentially more robust to occlusions in one or other
eye.

Coombs and Brown [7] make use of cooperating vergence and accommodation
processes in a stereo vision system for binocular fixation. Vergence is controlled
by a cepstral filter process developed by Olson and Coombs [8] and ensures that
the target is fixated in both eyes. Pursuit demands are generated by finding the
centroid of the zero disparity edges in the stereo disparity map. The method used
to generate pursuit demands means that the system in vulnerable if the target is
lost in either eye.

Pahlavan et al. [9, 10] also make use of cooperative processes to achieve smooth
pursuit, however they use a pseudo-correlation process (normalized image differ-
ence) for both vergence and accommodation control. This has the advantage over
the work of Coombs and Brown that the accommodation correlation process can
continue to be used as a monocular cue for tracking in the event that the target
is invisible to one eye.

An attractive alternative to these methods is to perform symmetric processing
on both left and right views. The algorithm we present adopts this approach;
corner features are tracked temporally in left and right images and matched spa-
tially between views. Correspondences common to a set of spatial and temporal
views are used to construct a common object-centred reference frame. This frame
is employed to effect fixation point transfer, ensuring that the trajectory of the
fixation point in space (i.e. the intersection of the optic axes of the cameras) is
consistent with the target trajectory.

In the following section we review the theory of affine transfer. While most
previously published algorithms achieve transfer using a minimal set of feature
matches, we extend this to take advantage of all possible feature matches, gain-
ing immunity to poor basis set selections. Section 3 describes the application of
transfer to gaze control and extends our previous monocular work to the binoc-
ular case. A real-time implementation of the complete tracking algorithm using
a network of transputers and Yorick, a high performance head/eye platform, is
described in section 4. Results from real-time experiments are given in section 5
and we conclude in section 6 with a number of areas for potential improvement
which are the subject of ongoing research.

2 Theory of affine transfer

Affine transfer is based on the assumption that the camera projection can be
adequately modelled by the linear equation [4]:

x=MX+t (1)
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where x is a 2 x 1 image position vector, M is a 2 x 3 matrix, X 1s a 3 X 1 world
position vector, and t is a 2 x 1 translation vector. This is the affine projection

equation, an approximation to true perspective which is valid when object relief is
small in comparison to depth; always the case in our work.

2.1 Four point transfer

Given multiple views of an object, an affine projection {M, t} for each view can
be determined from any four point correspondences. Denoting the image position

of the i*® point in the j** view by x?l, the j** projection {MU] tUl} is given by

MUT = (! = o) = ) o), b= (2)

Transfer of a point observed in the first two views to a third view may then
be accomplished by computing the 3D affine coordinates of the point X from the
first two views using least-squares on the four equations in the three unknown
coordinates of X which result from:

x(11 = plix 4 ¢l

and x[2 = MEIX 4+ ¢l ®)
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where * denotes the Moore-Penrose pseudo-inverse. The required image position
in the third view is therefore given by:
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2.2 Many point transfer

A weakness of the method outlined above is its reliance on the choice of four specific
basis points, relative to which the affine projections are defined. Any errors in the
image positions x will lead to inaccuracies in the projections. A better method
which we have exploited in more recent work [6] makes use of all available points
to obtain estimates of the affine projections MU! and affine structure X; which
minimize the objective:

E = ZZ ||xF] —_ MU]X:. — tU]” (5)

j=1li=1

The factorization method of Tomasi and Kanade [11] is a key element of the
improved algorithm, as follows.

The translational component of the projection in each of three views is given
by the centroid of the corners, tU]. Now consider the 2m x n matrix in which
each pair of rows consists of the image positions of the points in a particular view
expressed relative to the centroid; i.e.

~ Mo [ gl o
W = . ; . where tU] = Z x?] (6)
xll'“] —tm x!,["] — tml i=1
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If W = UZVT is the singular value decomposition of W with ordered singular
values o1 > ... > o, > 0 such that ¥ = diag(oy,...,0,), and the columns of U
are denoted by vectors u and the columns of V are denoted by vectors v then it
can be shown [6, 12] that the objective E in equation 5 is minimized when:

v.lr MUl
(X0 Xg] = v; and : = [oju; ouy o3us) (7)
v; M[m]

If m = 3 then transfer of a point in the first two views to the third proceeds
as in equation 4. Alternatively it is straightforward to extend equation 4 to the
case where m > 3 by computing the structure X from more than two views, using
least-squares on the 2m equations in 3 unknowns:

V(O x[1] — ¢l1]

X = . . (8)
M[m—-l] x[m-i] e t[m—l]

3 Fixation using affine transfer

If we consider a moving cluster of features localized on the target using for example
a simple corner detector and tracker, then the fixation or tracking problem is
one of reliably describing the collective position of the feature cluster over time.
Unfortunately all methods of feature point detection and tracking are prone to
feature loss and reappearance through errors, noise and occlusion. The result of
this, which we showed in [5], is that simplistic measures of target position such as
the position of an individual feature or the centroid of all features are doomed to
failure if the temporal stability of individual features cannot be guaranteed, which
is the case for any real system. However the theory of affine transfer outlined in
section 2 provides the perfect vehicle for obtaining a fixation point whose motion
1s consistent with the three-dimensional motion of the target features, even if the
actual desired fixation point on the target is invisible.

3.1 Monocular fixation

To begin, we review the case of monocular fixation using affine transfer, which we
addressed in [5, 6]. We then extend this to a binocular tracker which generates
demands for the left and right vergence axes which are coupled through the use
of a common object centred reference frame, ensuring that the trajectory of the
fixation point in space (i.e. the intersection of the optic axes of the cameras) is
consistent with the target trajectory.

Suppose that while tracking an object undergoing a linear transformation (more
general than a rigid one), the fixation point was gl!] in frame 1 and g[? in frame 2 a
short time later. Treating the fixation point as a virtual 3D point on the target, we
can compute its affine coordinates X,. Given temporal correspondences from the
first two frames to a third, the image position of the fixation point in the new view
can be found using the transfer equation 4 above, yielding a new desired fixation
point gl whose position relative to the 3D structure of the target is maintained



755

PP

o000

Frame 1 Frame 3

Frame 2 @
o 50

Figure 1: Transfer of the fixation point: point correspondences are marked with
a x while the fixation point is marked by a +. The tracking goal requires that a
new fixation point be found in the new frame. Affine transfer gives the fixation
point in the third frame relative to the 3D positions of the matched features. The
new fixation point is marked in bold.

over time. Neither X,, nor its projections gl!l, gl?l, gl need correspond to a
physical feature.

Therefore, with any four point correspondences (providing they are in general
position) in three frames we can reconstruct the position of the desired fixation
point given its image coordinates in the first two frames. Figure 1 illustrates the
process. The (minimum) four points used need not be the same over time, there
must merely be one set of point correspondences between each set of three con-
secutive frames. As the set used varies, we are effectively performing a change of
basis relative to which world and image coordinates are computed. Unlike other
tracking/fixation methods such as correlation matching, the method is viewpoint
invariant, insensitive to local occlusions and/or individual corner dropout or reap-
pearance, will work even if the fixation point in space is occluded, and is invariant
to changes in camera parameters such as zooming or focussing since no camera
calibration is required.

3.2 Binocular fixation

Whereas monocular cues are sufficient to allow the construction of an object cen-
tred reference frame and to obtain reliable fixation, there are the previously men-
tioned benefits to be gained through the use of stereo. Below we show how to
apply the principles of affine transfer to the binocular tracking problem.
Consider a set of point features (minimum size four)! which have been matched
temporally between frames 1 and 2 in both left and right images, and matched

!t is possible to reduce the number of matches required in all views by computing intermediate
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spatially between the left and right frames; i.e. we have a set of correspondences
[r] _[2L] _[1R] _[2R] _
5 S L S s T )
The centroid of the points in each frame yields the translational component of
the affine projection for that frame, and the SVD of the 8 x n registered measure-
ment matrix W constructed from the correspondences then yields a set of affine

projections:

Given the fixation points in frame 1, gl'#) and gl'f), we can compute X,, the
coordinates of the virtual 3D fixation point and effect the transfer (see equation 4):

Mz 1t (1L) _ ¢[1L)

gl = pBI [ iR E[m] _um |+ ¢[2L] (9)
M0z 1t L] _ ¢0L]

gt = MER [ MR ] g[uz] _ IRl 445 (10)

The matrix inversion involved in the pseudo-inverse calculation is a cheap op-
eration since 3 x 3 inversion can be performed in approximately 35 flops. The
costliest part of the computation is the singular value decomposition, which re-
quires O(n%(m+n)) flops. However there is no need to compute the full structure
in order to effect transfer, thus the full SVD is not required. If A = WWT | then
the eigen-decomposition of the 8 x 8 matrix A supplies the required pIOJectlons.

W=USVT = A=USSUT =UAU" (11)
where U is a matrix of eigenvectors u of A with corresponding eigenvalues o7, ..., o3

Thus the affine projections, obtained from the three most significant eigenvectors
of A may be computed in O(83) = constant time.

It is notable that in the stereo case corners need only be tracked temporally
between two consecutive frames, not over three frames as was the case for the
monocular fixation, meaning that the temporal stability of the corners is less
crucial. Secondly, the extra views afforded by the second camera lead to better
conditioning on the computations since 3D structure can be computed even for
pure translations of the target.

4 Implementation

The algorithm outlined above has been implemented as the final stage of a stereo
feature detection and tracking system running at 25Hz on a network of 10 T800
transputers. The network configuration is illustrated in figure 2. Tmax0 and
Tmax] are frame-grabbers whose role is to extract a foveal window from each image
and to provide timing and odometry information for subsequent processing and
control (details appear in [13]). Corner processors perform corner detection using
the Wang/Brady algorithm [14]. The two Track processors do the temporal corner
tracking on the left and right images respectively, and also compute monocular

structure, however this has not been attempted.
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Figure 2: The transputer network used to implement the stereo affine transfer of
the fixation point

fixation point transfer which is used as a backup in the event that stereo transfer
fails. The Stereo processor does the stereo matching, and the Affine processor
transfers the fixation point in left and right cameras using the algorithm of section
2.

4.1 Temporal and stereo tracking

The matching/tracking steps are covered in further detail in Reid and Murray
[5, 6]. The strategy is to use an independent constant image velocity Kalman
filter for each corner to predict the new position and covariance of previously
matched corners. An appropriate search window is derived from the positional
covariance and candidate corners which satisfy a cross-correlation threshold are
ranked by closeness to the prediction, with the winner being used to update the
Kalman filter.

Matches for previously unmatched corners are sought in a larger, fixed size
region. If a match is found then a Kalman filter is initialised for that corner using
the present and previous positions to provide position and velocity.

The stereo matching assumes that the cameras are already verged on the same
area and that the epipolar geometry is approximately known. This enables the
use of a simple search strategy again using correlation to test the quality of the
matches: for every corner in the left image a search is made in the right image in
a rectangular image region centred on the corner’s left image position, the search
region is defined so that only small vertical offsets (corresponding to deviation
from a horizontal epipolar line) are allowed, but much larger horizontal offscts
(corresponding to disparities and imprecise initial vergence on the object) can be
accepted. Future work will relax the horizontal assumption and make use of the
affine epipolar geometry, as outlined in section 6.
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The best match over a threshold is accepted, if it conflicts with a previous
match made, then the match with the strongest correlation is used.

4.2 Affine stereo transfer

The algorithm as described in section 2 requires that a minimum of four points
be matched in all four frames (i.e. 1L, 1R, 2L and 2R). If there are fewer than
four matches over the four views then tracking reverts to the use of independent
demands generated by the monocular trackers. Other strategies for coping with
the occasional lack of data are the subject of current investigation.

When tracking is initiated, the choice of fixation point is somewhat arbitrary.
Currently we use the centre of mass of the corners which have been matched in all
four frames. Assuming the correspondences are indeed valid, this ensures that the
3D position of the fixation point is within the target. Subsequently, new fixation
points in the left and right images are obtained via transfer of the old fixation
point detailed in sections 2.2 and 3.2.

5 Results

We present samples from one real-time experiment. The sequence shows a remote
controlled buggy being tracked using visual feedback from the algorithm to the
platform, causing the cameras to follow the target. The sequence covers about a
second of data processed in real time.

In each image the corners used in the affine transfer are shown in black while
other stereo matches are shown as white circles. Temporal matches are shown as
small crosses with their associated displacements represented by a scaled vector.
Single small crosses are other corners detected but unmatched. The fixation point
calculated by the stereo affine transfer is drawn as a large cross.

The stable demands generated by the algorithm are clearly demonstrated by
the plot (figure 4) of the 3D trajectory of the tracked buggy calculated from the
demands over several seconds. This is despite a number of incorrect matches.

6 Discussion

We have presented a new method for obtaining stereo fixation, which builds on our
previous work using affine transfer as the fundamental construct for a monocular
tracker. The virtual 3D coordinates of the fixation point on a target are computed
from a stereo pair of images and then transferred to new left and right views using
a set of features matched over time and between views. The transfer algorithm
is constant time, and so the method is fast: it has been implemented in real-
time on a network of transputers. In addition it retains all the benefits of the
monocular tracker, namely viewpoint invariance, insensitivity to local occlusions
and invariance to camera intrinsics.

The preliminary results presented indicate that the algorithm can provide a
stable fixation point which is consistent between left and right views and over
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Figure 3: Sample foveal stereo pairs from a sequence during closed-loop tracking
of the remote controlled buggy.

Vertical

Figure 4: Plot of 3D trajectory of buggy tracked over several seconds, shown from
the camera view point

time. However there exist a number of aspects of the implementation which have
considerable room for improvement.

The cases of insufficient, erroneous or ill-conditioned data must be handled
gracefully by the system if it is to maintain fixation for extended periods. The
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monocular tracker described in [6] has a number of “backup” algorithms designed
to cope with these eventualities, and similar strategies are being developed for the
stereo system. Use of outlier rejection possibly by testing disparity gradient would
go some way to addressing the problems of erroneous data.

Finally, further improvements to the temporal and stereo matching processes
would help guarantee the volume and integrity of the data used. In particular
the assumption of horizontal epipolars is overly restrictive in a verging system,
and easily overcome. Shapiro et al. have shown [15] that affine epipolar lines
can be derived easily from the affine projection matrices. It is worth noting too
that the matching of previously unmatched corners in the temporal tracking could
also be improved using affine epipolar geometry. A future development will be
to calculate the epipolar lines between temporally consecutive frames from a set
of temporally matched corners to be used to guide the search for candidates for
unmatched corners.
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