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Abstract

The performance of least squares method ca'n be improved by changing
the error metric so that points which lie far from the bulk of data do
not influence the final value—that is to reject the outliers. In this
paper, the combination of two robust estimators are used to obtain
motion parameters of a camera from matched image features. Results
obtained show that the robust estimator has the ability to remove gross
errors and mismatch points automatically. Therefore the existence of a
small amount of outliers or mismatches will not affect the final results.
Different robust estimators can be used for the purpose of parameters
estimation. In our case the Huber and Tukey's estimators are used
which allows ten per cent mismatches. Median absolute estimator can
also be used which can allow as high as fifty per cent outliers in the
whole corresponding points. But one of the disadvantage is that it will
take much more time.

1 Introduction

The estimation of the three-dimensional motion parameters of a rigid body is an
important problem in image analysis. An algorithm, in order to serve robotics
applications (or explain visual abilities) must be robust against noise—a small
percentage of noise in the input should not create catastrophic results in the out-
put. A conventional least squares method attempts to minimize an error metric
function in which the value at a particular parameter position is influenced by
all feature points. The least squares estimator is linear and unbounded with an
increase in any of the observed values. Outliers can easily destroy a least squares
fit. Therefore it is necessary to identify and eliminate them. In typical estima-
tion problems, a straightforward least, squares method is not particularly useful.
The linear motion estimation algorithm was developed, by Longuet-Higgins [1],
extended by Tsai and Huang [2]. The linear algorithm has an advantage of being
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simple and fast over the nonlinear algorithm as in [3]. It can also find a unique
solution except in degenerate cases [2, 4]. The linear algorithm works well when
there is limited noise and no matching error. However, it is highly sensitive to
noise and mismatches. Lee el al [5] show that when real world image data pro-
duced by a vision system were used, a disaster occurs. Because of the nature of
the linear algorithm, increasing the number of corresponding point pairs can only
to some extent suppress the noise effect. Besl et al [6] show one way to apply
the theory of robust statistics to the data smoothing and derivative estimation
problems. They demonstrated a robust window operator that preserves grey level
and gradient discontinuities in digital images as it smooths and estimates deriva-
tives. It is believed that many computer vision algorithms could be substantially
improved by using robust, statistical procedures, especially algorithms involving
multi-variate regression. Jones <7 al [7] investigate the problem of circle center
estimation using robust, redescending estimators. In this paper we use two robust
estimators to obtain an essential matrix which is later used for the calculation of
motion parameters and the 3-D structures.

2 The Linear Equation

Let X' = ( A ' W ' , ^ ' ) 7 , X = (AW./?)7' be the three-dimensional coordinates of
a point with respects to two viewpoints. They are connected by an arbitrary
displacement, we may write

X' = R ( X - T ) (1)

A general relationship between the two sets of image coordinates can be estab-
lished. Define a new matrix Q as in [1]

Q = RS (2)

where R is a rotation matrix, and S is a skew-symmetric matrix with elements
from the translation vector T:.

/ 0 Tz -Ty \
S = -1\ 0 T, (3)

V r'j ~T* ° /
The following equation can be derived which describes the relationship between
the image coordinates [1]:

x'7 'Qx = 0 (4)

where x' = (x',i/, 1)' . x = (-I.IJ. 1)' , are matched image points.
Now we come to the step to determine the nine elements of Q. There will be

one equation for every matched point, so the ratios of the nine unknowns of Q can
be obtained, in general, by solving eight (or if more than eight, by least squares
fitting) simultaneous linear equations of type (4).

When solving the homogeneous equation (4), where A is an N x M matrix,
if N < 9, the equation will has infinite number of solutions; if N = 9, when
rank(A) = 9, Eq (4) has only one zero solution; otherwise it has multiple solution;
if N > 9, the least squares method is usually used, and SVD is employed to be able
to handle the singular case. After the Q matrix has been obtained, the rotation
matrix, translation vector, and the 3-D results can be obtained as in [1].
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3 Robust Estimation

As in the case of the least squares method, robust estimation requires the mini-
mization of an error criterion. This function F is composed of terms from each of
the N data points. It is given by

J V - 1

F= (5)

where /?(€,;) is a function defining the effect of errors. The error term e,; is a
function of the /"' data points. In much of the robust regression, the numerical
values of the estimates can be obtained only after an iterative process because
the estimators do not have closed Conns like the mean and variance. Instead,
they come equipped with an algorithm for producing the value of the estimate--
for example, by minimizing a function [8]. Modern research on robust methods
offers even better performance if we can accept more complicated estimators, for
instance, the M-estimators, the class of estimators that oilers I lie advantages in
performance, flexibility, and convenience. Table 1 lists some of the M-estimators.

Table 1: M-Estimators for regression (t is the residual of an equation).
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With a weight matrix, Eq. (4) can be written as:

WAq = 0

where

(6)
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(8)

the vector q which minimizes ^2 p(t) can be found using Singular Value Decom-
position (SVD) method. The SVD of WA can be written as:

WA = U A V T
(9)
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where A is a diagonal matrix with Sj being its diagonal elements. Sj ,j = 1, 2, . . ., 9,
is the eigenvalue of the A matrix, and the matrices U and V are each orthogonal
in the sense that their columns are orthonormal, i.e.,

U r U = V T V = I (10)

Since V is square shaped, it is also row-orthonomal, i.e., VV = I. N is the
number of observations—the obtained corresponding points. The eigenvector of V
which corresponds to the smallest non-zero eigenvalue in A is the solution of the
weighted least squares. The residuals of the equations are obtained by multiplying
the solution of q by A. Gross errors are not necessarily accompanied by large
residuals as explained in [9]. Then the residuals need to be modified by:

M (11 )

where c,- is the residual for the /"' equation, and /).,-,• is I ho diagonal elements of the
projection matrix H [5], which was also called the Hat matrix in [8]. lia is referred
as the leverage of its corresponding data, and it is in the range of [^, 1]. In [7],
Jones ei al use a robust estimation technique to find the parameters of ellipse, but
they do not consider the effect of leverage points. The Hat matrix of A is defined
as:

Hn = A (A 7 'A)" ' A7' (12)

In analogy to Eq. (9), the SVI) of the matrix A is:

A = U,,A aV^ (13)

where U a , Art and Vn have the same property as U, A and V. Substituting
Eq. (13) into (12), one obtains:

Hfl = U a t £ (14)

To consider the leverage effects, the SVD method is modified by multiplying the A
matrix with a weight matrix as shown in Eq. (6), which is related to the residual
of each equation and the leverage values. The diagonal elements of the weight
matrix in Eq. (7) can be obtained as follows:

: i ^ )

where r? = . ,' ' /?,,; is the diagonal elements of Ht(, and it is determined only
by the values of the matched points. The object function can be modified as:

A; - 1

F'= ^P(rj)(l -hu)a (16)
7=0

By evaluating this function during iteration, the weighting coefficient for each
measurement can be obtained when the process terminates.

1 - / ' , : , . /' = 0 , I . - - - . A '
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4 Practical Considerations

When the number of measurements is relatively small (say, less than 30), the
term (1 — A,-,-) works well. In this case, if A,-,- is large, the calculated residual by
Eq. (11) is large, so the corresponding pair of points will be classified as an outlier
or mismatch. But if the total number of match points is very large (say, more than
100) and if the mismatches involved are more than two, the term (1 — A,-,-) will
not contribute much. Because of the inequality relation 1/n <Yl^a < P [8]. the
value of every A,-,- is very small. In this case, mismatches are difficult to identify.
An alternative way to detect mismatches is to check the value of Nh-u/p, where p
equals to 9, the number of elements of the Q matrix. If this value is larger than
2, then the corresponding match can be seen as a. mismatch.

With any iterative method, choosing the starting value is an important issue.
From a good starting value, a procedure will converge in fewer iterations and
incur less computation cost. Iterative M-estimators are particularly sensitive to
the starting value when the •(/'-function redescends. Given a poor starting value, an
estimator with a. non-monotonic (/-function may converge to a root of equation Car
from the overall minimum of the objective. The strategy adopted in this algorithm
is: Use a. monotonic j/'-function (a Huber M-estimator) with the ordinary least
squares estimate as the starting value, iterate to convergence, and then use the
nonmonotonic 0-function (a Bi-weight estimator) to iterate a few steps (perhaps
only one) further.

In practice, the error scale a must be estimated. One reason for estimating the
scale is that some knowledge of it is necessary to judge the accuracy of the fitted
regression model. A second reason is that, without taking scale into account, most
M-estimators would not response correctly to a. change in the measurement [8].
The most commonly used resistant scale of an estimator is the median absolute
deviation (MAD), which is

1.0 (0) i- / (0)

;•; — median I r^ (17)

where ?¥
t- is a preliminary residual of Eq. (6) and 0.6745 is the average value of the

MAD for samples from the standard Gaussian distribution. Termination follows
when the decrease in function F becomes small, for instance, when F{ > Q F , _ I ,

where a - 0.999.
The steps of the algorithm involves: 1) calculating the coefficient matrix of

Eq. (4) from the matched points; 2) obtaining the Hat matrix of A by using
Eq. (12); 3) setting the initial weight matrix to unity and use the Single Value
Decomposition (SVD) method to solve the weighted least squares equation; 4)
based on the result of this solution, calculating the weighted matrix W by Huber's
estimator, and evaluating the object function. If the value of the object function
is less than a threshold or if the change- of this value compared to the previous one
is less than a threshold, we say this part of iteration has converged. Otherwise,
use the the new W matrix to solve the least squares equation and repeat this
process till the iteration converges; and 5) the last stage similar to stage 4), but
calculating the W matrix by the Tukey's estimator.
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5 Simulations and Image Tests

For the evaluation of the robust estimator, several simulations and real image tests
were carried out. The effect of gross errors, and that of mismatches to the linear
and the robust algorithms were evaluated in the following subsections. The points
are generated randomly in a cube (100 x 100 x 100 mm). The camera is roughly
100 mm away from the bulk center of the generated points. The effective focal
length of the camera is 100 mm. The image points are obtained by projecting the
3-D points inside the cube onto the image plane.

5.1 The Effects of Gross Errors

The gross errors were obtained by adding two different levels of noise to the cor-
responding points. Noise with 0.2 pixel variance was first added, and then 3.5,
7.0 pixels variance noise were added in the case of Figure 1 and 2 respectively.
Figure 1 shows the effects of gross errors to the linear algorithm, while Figure 2
gives the effects to the robust algorithm. It can be seen from these two figures that
the robust algorithm has better immunity to gross errors, and that the change of
the levels of the gross errors has more effects in the linear algorithm than that in
the robust algorithm.

o.i

o.o

» Uniform-3.S
1 Gaussian-3.5

»~ ~ Uniform-7.0
» Gaussian-7.0

x

20 40 60 80 100 120
Number of Points

20 40 60 80 100 120
Number of Points

Figure 1: The errors from different number of points for the linear algorithm.
The noise level is 0.2 mm variance. Two levels of gross errors (3.5 and 7.0 pixels)
are added, (left,) The rotation error, fright J The translation error.

5.2 The Effects of Mismatches

The mismatches in the whole corresponding points were obtained by randomly
choosing points which are not. the correct matches. The number of mismatches is
10% of the total mathched points. Figure 3 represents the effects of mismatches
to the linear and the robust algorithms (left: rotation error, right: translation
error). The results show that the robust algorithm gives better performance than
that of the linear algorithm. Actually, the robust estimator detects mismatches
and removes them automatically when calculating the Q matrix. Thereafter, the
rotation matrix, the translation vector and the 3-D results can be obtained.
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Figure 2: The errors from different number of points for the robust algorithm.
The noise level is 0.2 mm variance. Two levels of gross errors (3.5 and 7.0 pixels)
are added, (left,/ The rotation error, (right,) The translation error.
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Figure 3: The errors from, different number of points for the different algorithms
in the situations when mismatches occur. The noise level is 0.2 mm variance.
The percentage of mismatch is 10%. (leftj The rotation error by linear and robust
algorithms, (right,) The translation error by linear and robust algorithms.

5.3 The Allowance of Mismatches
It can be seen from Figure 2 and Figure 3 that the robust estimator has the ability
to remove gross errors and mismatch points automatically. The linear algorithm
cannot deal with outliers or mismatches. The breakdown point(one can define the
breakdown point of an estimator as the smallest amount of contamination that may
force the value of the estimate off to arbitrary values) for the robust estimator is
1/(1 + p) [8]. In our case, p = 9 (the nine unknowns for the Q matrix), then
the breakdown point for the algorithm is ten per cent. That is 10% mismatched
points can be allowed in the whole corresponding points without affecting the final
results.
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5.4 Image Tests

The algorithm described above has been tested on both synthetic and real images.
The matching points are obtained by Chan's method [10], and they are shown in
Figure 4(left). The results after the robust estimation for the mismatch removal
are given in Figure 4(right). It can be seen that a number of edge points have been
removed (e.g. the points near some of the corners, especially the corner behind the
small cube). Figure 5(left) shows the four projections of the 3-D results obtained
without mismatch removal. Figure 5(right) gives the 3-D results using robust
estimation to achieve mismatch removal and to get more accurate 3-D structure
of the objects. Comparing Figure 5(left) and (right), it can be seen that the
result shown in the (right) are better than that shown in Figure 5(left). It can be
seen from the top-right projection and the bottom-left projection of Figure 5(left)
that the squares have been skewed. But the results given in Figure 5(right) more
resemble to the real objects (squares).

Real images have also been taken to test the algorithm. The objects on the
image are a cube and a headlamp model. The matching of the images was achieved
by Chan's multiple view method [10]. The matched edge points before and after
the robust estimation for mismatch removal are shown in Figure 6(left) and Fig-
ure 6(right) respectively. Figure 7(left) shows the projections of the 3-D result
obtained from 2-D corresponding points before mismatch removal. Figure 7(right)
gives the projections of 3-D result obtained by the method developed in this pa-
per. It can be seen that the mismatches (or matches with gross errors) have
been removed, and therefore the result looks clearer and better (the square in the
bottom-left quarter of Figure 7(left) has been skewed, but it has not been skewed
in Figure 7(right). An erroneous line in the top-right quarter of Figure 7(left)
has been removed in Figure 7(right)).

Figure 4: (left) The matched edge maps of the simulated cubes; /rightj The edge
maps after mismatch, removal from the simulated cubes.
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Figure 5: (leftj Projections of the results of simulated objects obtained without
noise removal; fright J Projections of the results of simulated objects obtained using
robust estimation to achieve mismatches removal.

Figure 6: (left^ The edge map of the objects (a cube and a headlamp) after match-
ing using Chan's method; (right,) The edge map of the objects (a cube and a
headlamp) after mismatch removal.

6 Conclusions
The robust algorithm has better performance than the linear algorithm when gross
errors and mismatches occur, because the robust algorithm can detect outliers and
mismatches and remove them automatically. The existence of a small number of
outliers or mismatches will not affect the final results. Different robust estimators
can be used for the purpose of parameters estimation. In our case the Huber and
Tukey's estimators are used which allow ten per cent mismatches. The median
absolute estimator can also be used which can allow as high as fifty per cent outliers
in the corresponding points. But one of the disadvantages is that this takes much
more time.

Robust estimation offers a theoretical framework for assessing outlier rejection
schemes, and more importantly, provides an approach capable of great accuracy
to parameter estimation in contaminated data distributions. These methods will
have wider applications in computer vision and image processing.
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Figure 7: (left) Results obtained from data with mismatches; fright^ Results of
real objects obtained using robust estimation to achieve mismatches removal.
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