
A Two-Stage Approach to Multi-Sensor
Temporal Data Fusion

D.Hutber and Z.Zhang
INRIA,

2004 Route des Lucioles,
B.P.93,

06902 Sophia Antipolis Cedex,
France.

dhutber@sophia.inria.fr, zzhangOsophia.inria.fr

Abstract

This paper proposes a two-stage architecture for multi-sensor tempo-
ral data fusion. The first stage uses extended Kalman filters to track
tokens seen by each sensor, and the second stage links the tokens cor-
responding to the same real-world event. Two pairs of strategies are
presented relating to the initial data association between tokens and fil-
ters, together with decision rules for switching between them. One pair
is for the 'bootstrap' phase and the 'continuous' phase for an event,
and the other distinguishes between a complex tracking task and a
simpler one. The application of the techniques to a driver's assistant
system is described.

1 Introduction

The problem of multi-sensor data fusion has been extensively formulated by others
[4, 3] without the explicit use of time. The work described here concentrates on the
subset of possible applications for which a temporal model of the dynamics of the
'world' is available. The problem is stated in terms of a (non-linear) state-space
model, for which the method of Extended Kalman Filters is chosen to estimate the
state of the world from limited observations. Typical applications of this approach
are robot navigation and surveillance.

2 Problem Formulation

In this section the formalism being used to describe the proposed architecture and
the principal problems involved are presented.

2.1 Extended Kalman Filters

An uncontrolled non-linear system with state variables x(t) of dimension n and
observation variables y(t) of dimension m is described by the following equations:

BMVC 1994 doi:10.5244/C.8.71



722

x f c + i =
yfc =
where A(xk) is the linearised state transition matrix and C(xfc) is the linearised

observation matrix the value Xfc, fik is the state noise and Vk is the observation
noise. The covariance of the state variables is P.

In the linear case, provided the additive noise is Gaussian, a Kalman filter
provides an optimal way of estimating the state variables x given the observations
y and known values of the state noise and observation noise.

The update of the estimated state variables x is carried out in two stages, a
prediction (denoted by the suffix kjk — 1) followed by a correction (denoted by
Jk/Jb):

•X.k/k-1 = AfcXfc.j/fc.i (1)

l Qk (2)

and
C ^ ) (3)

where R and Q are the observation noise and the model noise covariance ma-
trices.

2.2 Asynchronous and Non-Monotonic Observations

In order to motivate the attention given to this particular aspect of the multi-
sensor temporal data fusion problem, consider the case of a mobile robot moving
through the environment, equipped with multiple sensors. The raw data acquired
by these sensors will usually need some degree of processing prior to the fusion
process, and this processing time will usually be data-dependent. In addition,
active strategies may be employed by the robot to acquire data from those parts
of the environment that are more complex, more relevant or less accessible. This
work assumes that the time at which data is collected by the various sensors is
known, and the time of the last observation for each sensor i is denoted by ti.

As a result of these constraints, the data arriving from the sensors to be fused
will in general be asynchronous, and due to the variable processing time involved
may well be 'out of order' (in the sense of being non-monotonic in time, clearly!).
Thus any architecture designed to cope with this type of data must be able to
handle asynchronous and non-monotonic data sequences. We now re-formulate
the problem for the asynchronous constraint, the monotonicity being taken care
of by the choice of architecture presented in Section3

The equations (l)-(4) are for the discrete case, with the index k running in our
case over time but more generally over the number of observations made. Since
we are interested in using this formulation for the temporal evolution of a physical
system, we first change from the use of constant discrete time intervals between
observations of 8t — constant to the use of a variable time interval. In the general
case this makes the matrix A = A(x,6t).



723

The other change that is made concerns the evolution of the covariance matrix
P in time. We estimate the noise in our model of the dynamics of the system Qk
by an expected error in the state vector, typically in the higher order derivatives.

In the application that will be described more in Section 5, a state vector
comprising position and velocity is used, together with an expected acceleration a
that is modelled as noise. Thus the matrix Q becomes:

Here a defines the (assumed known) physical limits of the objects being tracked.

2.3 Data Association

The problem of data association arises when data corresponding to several 'real-
world events' is sensed by the sensors, when erroneous detections are made (false
alarms), and when events are not detected (missed targets). Thus in our formula-
tion there may be several perceived events that are modelled by separate E.K.F.'s,
which may or may not correspond to real-world events. More will be said about
this in Section3

Within the E.K.F. formulation of this problem, we can use the maximum like-
lihood estimate to match any of the #Obsi(t) observations with timestamp t from
sensor i y\j ,j = 1,2, ..,#Obsi(t). The observation which satisfies this is the
one which is closest in the Mahalanobis distance sense from the estimated state
variables of the perceived events. The closest observation must also satisfy the
Mahalanobis distance test to decide whether it is more likely to have arisen from
another random event.

The Mahalanobis distance test between two vectors xi and X2 of dimension m
who have covariance matrices Pi and P2 is given by:

(xi - x2)(Fi + P2)"1(xi - x 2 ) r < K

where K is a threshold chosen from a \2 distribution table with m degrees of
freedom.

The maximum likelihood estimate will not, however, always match up the
'correct' observation to an E.K.F., especially when the covariance of the vectors
is large. This is generally the case when not many observations of the event have
yet been made. Various strategies are possible such as best first association, or
probabilistic methods [2] which maintain multiple hypotheses with probabilities
attached to them.

For this reason, the strategy that will be presented in Section 4 differs according
to whether 'few' observations of an event have been made (the bootstrap phase) or
whether 'many' observations have been made (the continuous phase). A decision
rule for switching between the two will also be presented.

3 A Two-Stage Architecture

This section presents an architecture to handle multi-sensor temporal data fusion
in an environment where there are potentially many events. It is in two stages,



724

Stage 1 Stage 2

Distance
Test

Stale Variables
corresponding
In one
real-world event
< x k )

Figure 1: The Two-Stage Filter Method

the first of which consists of temporally fusing the data from one sensor, and the
second of linking up all the sensors to produce a single output. It takes advantage
of the (generally true) fact that a single sensor will yield a series of observations
that are monotonic in time, which will in practice be true when the logical sensor
is implemented on a single CPU or in a pipeline architecture. Thus the problem
has effectively been sidestepped by using the monotonic subsets of observations
from each sensor, hence a conventional (asynchronous) filter can be used for each
subset. If the data is not monotonic, another architecture using the propagation
of observations forward in time has been proposed [5].

Thus (see Figure 1), for each observation y^ of a perceived event (j) in each
sensor (i), in the first stage the observation is first associated with an E.K.F.,
which calculates a set of state variables x^. In the example there are three logical
sensors, two with one observation and the other with two observations which arrive
asynchronously. The data association is done using a strategy that depends on
whether the observation is associated with an existing filter (and hence is in the
continuous phase) or whether a potentially new event has been sensed (bootstrap
phase). An E.K.F. is created only when a large enough set of observations have
been associated together to make the probability that the perceived event corre-
sponds to a real event large enough. This is described in more detail in the next
section.

The second stage is to combine the Xij corresponding to the same event in
different sensors to give a better estimate of the state variables x^. This is done
by first asynchronously propagating each of the filter state variables up to a time
T, where T > ti, Vi, using the prediction stage of the E.K.F. equations.

Now, at any given time there will be two types of filter variables Xy. The
first are those that at a previous time have already been associated with event
k. These continue to be associated with the event, and there is currently no re-
trying of possible associations. The second type are those that have not yet been



725

o

o

= Observation = Association between Observations

o
o <

c

(> Ca

Figure 2: Example of Possible Data Associations

allocated to an event. Remember that a filter is created only when it has a good
chance of corresponding to a real event. We also use the constraint that at most
one filter from each sensor can correspond to the event. As a result, all the existing
filters xij that have no link to a filter from sensor i (I ̂  i) are tested using the
generalised Mahalanobis test:

where the dimension of the test is now equal to n.
The estimated state vector and covariance for each event Xk(= Xj) can now be

calculated from the state and covariance of the linked filters. This may be done
optimally using the formula:

N

N
where:

- a formula which can be derived directly from the E.K.F. equations. In the
example there are five resulting events.

4 A Strategy for Data Association

The choice of a strategy for data association is still somewhat of an art, with
parameters that are set on a trial and error basis. Here, given that the context of
the two-stage method is targeted at applications having a time evolution model, we
try to use a strategy that is determined as much as possible by the data themselves,
and by measurable physical characteristics of the system that is being modelled.

Consider the following example (Figure 2):
The figure represents a simple ID case of data association, with time running

horizontally. Thus in the example there are three observations at time U(l), two



726

at time U(2) and two at time U(3) In the first case, we claim it is impossible, or
at least very unwise, to try to associate any of the tokens together, in the absence
of any further information.

In the second case, if it was known that the tokens' states could change by only
a small amount between the times shown, the data association shown by the lines
would become more likely.

The association shown for the third case would be more likely if we knew that
false alarms and missed targets were rare.

Finally, the fourth case shows yet another association if we were somehow able
to 'colour-code' the observations.

The purpose of this example is firstly to show that the problem of data associ-
ation is not necessarily easy, and secondly to show how additional information can
help to ease the decision-making process. The above example is quite a complex
task, needing a strategy that postpones decision-making, such as [6]. However,
especially in the context of real-time systems, such a strategy can be expensive to
implement. One solution is to be able to detect when a data association problem
is becoming complex or simple, and switch between strategies accordingly.

We choose two data association methods, one simple and the other more com-
plex, and present a criterion for switching between the two that gives an indica-
tion of the likely complexity of the association task. In both methods the current
observations at time t(k) are y*j ,j = l,2,..,#Obsi are associated with a repre-
sentation of the observations at time t(k — 1). The representation is different for
the two strategies.

Best First
The simpler method uses the previous set of observations y*j ~ . Here the idea

is that since the association task has already been determined as being relatively
easy, the closest observation to the last one is a good choice. We use a distance
function, e.g. the Mahalanobis distance, with an associated test threshold based
on 95% or 99% confidence, to calculate the distance between all pairs of observa-
tions at the two times d(y1^ ~~ ,y\j ). We find the minimum distance of all the
#Obsi(t(k — l)).#Obsi(t(k))/2 pairs, and then associate these two observations
together, eliminating all others pairs that contain one of these two observations.
This forms the next link of a chain of observations at times t(k), t(k — 1),... Thus
the association is at most 1-1, any remaining observations that are unmatched
from time t(k — 1) are eliminated, and any unmatched from time t(k) start off
new observation sequences. A variant on this method, more in the asynchronous
spirit of this paper, is to use the idea of a 'lifetime' of an observation. The obser-
vations at t{k), t(k — 1) are replaced by observations that are not necessarily from
consecutive time-frames, but within the lifetime defined. Thus an observation y*j
may only be associated with an existing chain culminating in y'j if fa — t\ is less
than the defined lifetime. This technique also gracefully deals with the problem
of missed targets in the bootstrap phase.

Beam Search
The beam search method is different from the best first one in that multiple

hypotheses are allowed at each stage. Instead of choosing the closest observation,
we split or duplicate an existing filter into a number of filters, with the number
of duplications equal to the number of observations found in the Mahalanobis



727

neighbourhood. We leave the forthcoming observations to decide which match is
correct. The filter resulting from the correct match will be confirmed by subsequent
observations, while those resulting from incorrect matches will, in general, not. A
support of existence measure is then defined to prune out the unlikely branches
of the split filters. The multiple-matches problem is thus handled gracefully. The
method is described in greater length in [6].

The only remaining decision is when to switch between the bootstrap phase
for an event and the track phase. At present this is still a parameter which is set
manually, dependent on the sensor being treated.

4.1 A Tracking Complexity Measure

Since we are dealing with the time evolution of physical systems, we use some
simple physical measures to help define the tracking complexity measure.

Firstly note that as in the second case of Figure 2, for a physical system there is
usually a maximum rate of change in the observation variables (generalised velocity
or smoothness condition) which we will denote by Vmax, a vector of dimension m.
This is different to the model noise that was discussed in Section 2 in that it
relates to the observations rather than the state variables, and is valid over a
comparatively short timescale. If Vmax is large, then we must search in a large
space for the data associations, and the complexity is high.

Secondly observe that the observation noise, as modelled by the covariance
matrix R, largely determines how many other observations are within the Maha-
lanobis neighbourhood of an observation. If R is large, the distinction between
neighbouring observations is small. This implies that it will be difficult to associate
an observation to a given set of past observations (either a sequence or branched
filter), and the tracking complexity will again be high.

We thus define a tracking complexity measure (T.C.M.) 1 as the following:

#ObSij-l

where N = #Obsi{#Obsi +1)/2 where all the quantities are evaluated at time
t\ for observations in the ith sensor, and:

V = diag{[l/3Vmax(ti(k) - U{k - I))]2} (6)

The idea, borrowed from pattern recognition, is to determine an average intra-
cluster distance on which to base the strategy decision. The measure gives weight
to observations that are close together in a neighbourhood definition which includes
an element of the expected change in the observation over time. The factor of 1/3
relates the maximum velocity to the Mahalanobis test, since we are using a 3<r
probability threshold. This test still needs a threshold T to be determined, but
since it takes into account the error expectations it is relatively robust.

The strategy for data association in Stage 1 of the two-stage architecture now
becomes:

This can be either global, or a bucketing technique can be used



728

Try to match y^ to existing filters Xij(t(k)), Pij(t(k)) using best first method.
For all those observations remaining unmatched, calculate the tracking com-

plexity measure (TCM).
If TCM > T, use beam search strategy allowing track splits.
If TCM < T, use best first strategy to associate observations.
For all sequences that have sufficient observations (another threshold), use

these observations to initialise a Kalman filter.

5 Application to a Driver's Assistant System

This two-stage approach to multi-sensor temporal data fusion has been imple-
mented as part of the Eureka PROMETHEUS ProArt project. The driver's assis-
tant system uses several types of visual sensors, including telemetry, linear stereo,
movement and other logical sensors to provide information about the environment
of the vehicle. The fusion module constructs a map of the environment, giving the
relative position, velocity and size of all the perceived obstacles. The map is then
analysed by a copilot module in order to determine which obstacles, if any, pose a
danger to our vehicle.

An interesting aspect of this application is the relative importance of the Type
I errors (false alarms) and the Type II errors (missed targets). Clearly a missed
target (a car or other real event not detected by the system) could be very serious
for the safety system, since it represents an unknown hazard. At the front of the
vehicle the system has a controllable time-of-flight telemetry sensor [1] that enables
a focus of attention mechanism to be used. For any perceived event that represents
a safety hazard, more information can be collected relating to that event. Thus a
false alarm can usually be resolved later by collecting more data, whereas a missed
target is more difficult to resolve. The fusion parameters are thus biased heavily
towards Type I errors.

The experimental results presented are for simulated noisy data using param-
eters estimated from a knowledge of the real sensors. The tracking complexity
measure is calculated for each sensor independently. Here the telemetry sensor
is simulated in scan or uncontrolled mode (as opposed to the controlled focus-of-
attention mode). There are two vehicles in front of us.

The two sets of figures represent, for two different noise levels, the performance
of the two algorithms. The sensor (our vehicle) is at the bottom of the figure with
the field of view upwards. Each rectangle represents an observation, its width
across the page representing the perceived size of the event.

The first figure of the sets represent the input to the data fusion program,
integrated over about 60 frames, for two rates of false alarms and missed targets.
The first set shows an expected number of false alarms of 2 and a missed target
probability of 0.1. Occlusion is taken into account for seen events, thus at the top
left of the first figure false alarms are seen because one of more of the real events
have been missed.

The second and third figures in the sets show the output of the fusion algorithm
for the two cases of best-first and beam search respectively. In these figures the
size of the rectangle now indicates the uncertainty of the position state variables
calculated from Pj. Thus a series of rectangles getting larger generally indicates



729

Figure 3: Input/Outputs from Fusion - Simple Case

a false alarm that has received no observations to decrease its uncertainty. The
heavy bias towards Type I errors is reflected by the persistence of a false alarm for
a relatively long time after observations in its gate have ceased. In principle this
may be resolved by using the active mode telemetry. In the first set of figures it can
be seen that there is little difference between the performance of the algorithms
(the best-first has two major false alarms, the beam search only one). The extra
overhead of maintaining multiple hypotheses is not justified and this is reflected
by an peak value of the T.C.M. of 0.13.

Figure 4 has the same ground truth data, but with 5 false alarms per frame and
missed target probability 0.1. Here the beam-search algorithm out-performs the
best-first considerably, making the extra computational expense more worthwhile.
The peak T.C.M. here is 0.55.

6 Discussion and Conclusions

An architecture for multi-sensor temporal data fusion and a strategy for data
association have been presented. The key design points are the following:

An attempt has been made to relate the system parameters to physical quan-
tities. In the context of the driver's assistant application this means that the
copilot has the opportunity to meaningfully change the model used by the fusion
module, or to reason about errors in the environment map. Of the two remaining
thresholds, the first determining the switch between the bootstrap and continuous
modes is a function of the false alarm and missed target rates, which have to be
empirically determined for any given application. The second threshold on the
tracking complexity is relatively robust since observations that are close (in the
Rij + Ru + V sense) contribute largely to the measure. A bucketing technique
helps to localise the data association problems, so that different strategies can be



730

Figure 4: Input/Outputs from Fusion - Complex case

running in different buckets at the same time.
These switches enable a real-time system to make opportunistic savings in time

of calculation. However, for the tracking complexity measure, there is certainly
an overhead in calculating the measure, and if in the application being considered
the switch is made very infrequently, an alternative strategy such as calculating
the measure every N seconds, (say), may be better.

References

[1] J. Alizon, J. Gallice, L. Trassoudaine, and S. Treuillet. Multisensory data
fusion for obstacle detection and tracking on motorway. In Proceedings of the
3rd PROMETHEUS Workshop, pages 85-94, April 1990.

[2] Y. Bar Shalom and T. E. Fortmann. Tracking and Data Association. Academic-
Press, Boston, 1988.

[3] James J. Clark and Alan L. Yuille. Data Fusion for Sensory Information
Processing Systems. Kluwer Academic Publishers, 1990.

[4] H. Durrant-Whyte. Integration, Coordination and Control of Multi-Sensor
Robot Systems. Kluwer Academic Publishers, 1988.

[5] D. Hutber, T.Vieville, and G. Giraudon. Data fusion for reliable detection
and tracking of multiple obstacles in a road environment - an asynchronous
approach. In Proceedings of SPRANN 94, April 1994.

[6] Z. Zhang. Token tracking in a cluttered scene. Image and Vision Computing,
12(2):110-120, March 1994.


