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Abstract

Linear algorithms are presented for computing the 3-D structure and motion of
vehicles in traffic scenes under the ground-plane constraint. Point matches in
multiple image frames are used. The algorithms first determine the inter-frame
rotation angles, then the point depths, and finally the inter-frame translations. All
computations are linear and require no parameter tuning. The algorithms are tested
with both synthetic data and routine traffic images. Extensive experimental results
are reported that demonstrate the validity of the algorithms.

1 Introduction

Much effort has been devoted to the computation of 3-D structure and motion (SFM) from
point matches in multiple frames [1]. We call the SFM algorithms that use multiple (more
than two) frames the Multiple Frame SFM, or MFSFM algorithms. A MESFM algorithm
can be either recursive or batch in nature, depending on whether it processes one frame at
a time or all frames simultaneously. In general, batch approaches have been shown to be
both more accurate and stable [2], but recursive techniques such as [3] are more
convenient to use in practice.

Despite nearly two decades of active research in the area, a general robust SEM
algorithm remains elusive [1]. The difficulties are primarily due to the scale of the task of
solving the six degrees of freedom non-linear problem allowed by general SFM
algorithms. Many practical tasks in vision need be concerned with fewer degrees of
freedom, since object motion is often subject to physical constraints, such as the
commonly occurring ground plane constraint (GPC) [4]. The GPC reduces the number of
degrees of freedom (DOF) of arigid object from 6 to 3. The 3 DOFs are most conveniently
expressed as the translation (X, Y) on the ground-plane (GP), and the rotation (8) about
the axis normal to the GP. In previous work [5], we have shown that the GPC allows
simple and robust MESFM algorithms which do not suffer from the usual pitfalls of the
existing MFSFM algorithms. The algorithm described in [5] is based on the distance
invariance property of the rigidity constraint [6]. The algorithm first computes the depths
of object points by solving a set of quadratic equations, and then the inter-frame motion
parameters are estimated by one of the absolute orientation algorithms (e.g., [7]).

In this paper we show that the GPC also permits entirely linear and robust
MFSFM algorithms. The algorithm described here decomposes the computation into
three stages. It first determines the inter-frame rotation angles, then computes the depths
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Figure 1:  Coordinate sysicms and the imaging model.

of points, and finally estimates the inter-frame translations. The computation at each stage
is lirear. The new algorithm has several advantages over that given in [5]:

» The recovered structure and motion are guaranteed to be rigid since the full rigidity
constraint (rather than the distance invariance property between points) is imposed.
« The algorithm is entirely linear.
» The algorithm is mathematically more elegant and involves no heuristics.
The work presented in this paper was conducted in the context of machine vision
for traffic scene analysis, but is also applicable to a wide range of potential industrial
applications such as mobile robot navigation [8].

2 Geometry and Notations

The camera is regarded as a linear pinhole perspective camera without lens distortion. The
geometry of the camera coordinate system (CCS) and the world coordinate system (WCS)
is illustrated in Fig.1. The WCS is defined on the GP on which objects such as vehicles
are confined to move. The CCS is related to the WCS by al known 3x3 rotation matrix R

and a known 3x1 translation vector T = (C, C C) (R and T are obtained by
means of camera calibration [11]). Under the mlagmg geometry shown in Fig.1, the
camera coordinates of an image point (u v) isgivenby P, = (u ¥ v)7, and those of
the corresponding 3-D point by P, = AP, where ¥ is thefocal length, and A the depth
scale (the depth from O ) of the 3- Dpomt The world coordinates P, of the 3-D point is

P, =AUV W +T )

where (U V W)” = RP,. Under the GPC, the world coordinates P, of a point at time
¢’ are related to its coordinates P, at time ¢ by

cosO —sinb 0 X
P’ = |sin® cosd OP,+|Y )
0 0 1 0

By combining (1) and (2), we obtain
AW +C, = AW +C, (3a)
NU'+C, = (AU+C,) cosB~ (AV+C,) sin0 +X (3b)
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l’V’+Cy = (AU+C)) sin0 + (7LV+C),) cosO+Y (3¢c)

From (3a) the depths A and A’of a point at time ¢ and ¢’ are related to each other by
A= AW/W =QA 4)

The following symbols are defined for use in the subsequent discussions:
Sp=1{FoF,F, ....Fy . Fy}: the set of M+ 1 frames in which points

have been detected and matched.
Sp = {Pl,Pz.‘.. Py_1: Pyt the set of points appearing in §j.
.S‘Pm = P i Pras s Py 1 the set of points present in frame F, , ie.,
" Sp € 8p.

We do not require Sp,, = Sp,, m #n, thus point occlusions are allowed. The
motion of the image sequence is described by the inter-frame motion parameters between
an arbitrarily chosen reference frame and each of the other frames. For convenience, we
use F, as the reference frame and assume that all points are present in the reference frame,
ie., Spy = Sp.Let the 3D structure of the object be defined by the depths A , A,
of the N points in the reference frame. The problem to be solved is: Given Sy and
Spmpm€ {0,1,2, ..., M}, determine A s Ay, andthemotlon {X,, Bm}
from the reference frame F, to each of the otﬁer M

3 Computation of Rotation Angle

We first discuss how to determine the single rotation angle from the reference frame F,
to Frame F . By substituting (4) into (3b) and (3¢), we obtain for each point P,

lQ U, +C, = AU, .oosﬁ -7V, .sinﬂ +C, cos6 —C sin®_+X, (5)

M(MI

A0,V +C —-?\.Votcosﬁ +A,U, ;sin@ +C sinf +Cycos0, +Y,  (6)

mimz

where subscripts 0 and m indicate the reference frame F, and Frame F, respectively.
When confusion is unlikely to occur, we omit, for the sake of clarity, the subscript 0 in
the following discussions. Therefore a pair of matched points P; and P leads to the
following four equations:

2,0, i Up i+C, = NUcos6, —AV;sinf +C.cos6 —-Cisinf +X, (72
l o vV C liV,-cosBm+K£U‘-sm8m+stm6m+Cyoosﬁm+Ym (7b)
ljchosﬁm—- lejsian+Cxcosﬂm—Cysin9m+Xm (7c)

m, i m, l'
A, Q U, +C,
A, Qm JVm,‘*‘C = AjVjcosSm+k}.Ujsi.an+stin6m+Cyoosem+Ym (7d)

m,j= m,j

By subtracting both sides of (7a) from those of (7c), we get
A Q U i=7Q, iUp i = (ljUj—l‘.U,-) cos6, - (lej—liV‘-) sinf 8)

m,j-m,j m, i~ m,i
Similar operations on (7b) and (7d) give rise to the following equation:
1, iVin i =M@, Vi i = (WU =NU) sin0, + (AV,=AV)cosB, (9

m,jomj m, i’ m,i

Eliminating the depth parameters from (8) and (9) yi:lds
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Fcos, +Gsin® = H (10)
where the coefficients are given by
FumVQu iUn it Uy Vo i= UiQm,ij,j Vil U mii
CG=VQs Vi~ Vil ¥ UiQm,ij,j =~V iV (11)
H=Q, Vi i@ iUn i~ Lm,iUm, iCm jVm,jtVil;=UV;

Eqn. (10) states that each pair of points specifies one constraint on the rotation angle. If
there are N, pointsin F, ,onecan write a totalof N, (N, —1)/2 suchconstraints (by
considering all possible point pairs):

F,c0s0 +G sin =H, n=12 .,N,(N,-1)/ (12)

The equations in (12) only involve the rotation angle so the rotation parameter can be
computed independently of the translation and depth parameters. In the following, we
outline two linear techniques for solving the rotation angle 6 from (12).

3.1 The linear least squares (LLS) technique

If cos®, and sin®  are regarded as independent variables, (12) becomes a set of linear
equations in two unknowns. The standard LLS technique can then be used to compute
cos6, and sin® .The rotation angle 6 can easily be derived from cosf and sin® .

3.2 The non-linear least squares (NLS) technique
Closed-form solutions to (12) that do not neglect the constraint cos’ 0, + sin’ 6, =1lare
also possible. The equations in (12) can be written in a matrix form as
where g = (cos0 s'mB)T, and A and H are the known coefficient matrices. The NLS
solution of (13) is then given by

q= arg{n};inllAq—Hil.z}; subject to Il gli* = 1 (14)

The above constrained minimization problem can be mapped into a 4th-order polynomial
equation in one unknown. The roots of the polynomial may be found in closed-form, and
the rotation angle 6  is computed accordingly [9].

In summary, we have shown that the single rotation angle 8  from the reference
frame F, to Frame F, can be computed independently of the depth and translational
parameters. Two point matches specify one constraint on the rotation angle, thus allowing
a maximum of two solutions. Three points define three constraints, and the solution for
the rotation angle is in general unique. The rotation angles from the reference frame to
other frames are computed similarly.

4 Computation of Point Depths

Once rotation is known, Equations (8) and (9) impose two constraints on J\.i and ?uj:
er i\ = Jm,j"'j; K, A= Km.j;"j (15)
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where
i = eriUm|i—-Ufcos9m+V,-sian: K. i=0Qp iV i~ U;sinB, —Vcos6 (16)
Therefore, for all points in all frames, we get a set of constraints on the depths of the N
points in F:

I, ih = erjk}.
, YmF, €S8 i=1.,N,-1,j=i+1,.. N an

m

{KJLKZ.

m, i
The equations in (17) can be written in a matrix form as
CA=0 (18)
where A (= (A, A, l))lstheunknowndepthvectm and C is the

known coefﬁc:ent matnx Smoe tél.e equations (18) are homogeneous, the depths can only
be recovered up to a global scale - a well-known fact in SFM [1].

4.1 Biased depth normalisation
The global scale in depth is commonly resolved by fixing the depth of one of the points.
Let kl = 1. Then Equation (18) becomes

C_A_, =~C, (19)

where A_l = (7\,2 J'LN_I lN) ,C,istheﬁrstcolumnofC.andC_]isthematrix
formed by the remaining N — 1 columns of C. A_, can easily be solved from (19) using
the standard LLS technique.

4.2 Unbiased depth normalisation

The normalisation method described above is biased in that the depth solutions obtained
under different normalisation points are in general not related to each other by a scale
factor as they should. An unbiased method is to compute the depths from (18) subject to
I A|| = 1. In this case, the objective function to minimise becomes

e(A) = [|CA||* = (CA)T(CA) =ATDA, subjectto || Al|*> =1 (20)

where D = CTC is a NxN symmetric matrix. The solution of (20) is given by the unit
eigenvector of D corresponding to the smallest eigenvalue.

5 Computation of Translational Parameters

Once the rotation angle and the depth parameters are known, the translation parameters
can be solved very easily by substituting the known parameters into (5) and (6). To
combat noise, we take the average of the solutions given by all points.

6 Experimental Results

Experiments have been carried out to investigate the validity and performance of the
algorithms presented in the preceding sections. Both synthetic and real image data were
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used. With synthetic data, the performance of the algorithms was investigated by means
of extensive Monte Carlo simulations. The set-up for the simulations was as follows. The
parameters of the camera were those of a real outdoor calibrated camera having an
effective focal length of 1475 pixels. The object was a cuboid of dimension 3x2x1.2 m’
(=Length*Width*Height), and was located in front of the camera with a nominal depth of
23.6 metres. Object motion was generated by rotating the cuboid around the vertical axis,
followed by a translation on the GP. The known object movement was chosen to represent
typical vehicle movement in traffic scenes. A specified number of points was generated
randomly within the cuboid. Data noise was simulated by adding zero mean, uniformly
distributed random values to the ideal imaye coordinates of all points in all frames. The
level of noise was indicated by the maximum perturbation AE (in pixels) on the image
coordinates. The performance of the algorithms was measured by the relative errors
(averaged over all frames) of the computed motion parameters, and the absolute standard
scene error (SSE) which is the mean of the Euclidean distances between the original and
reconstructed 3-D points in the reference frame. All images were of size 512x512 pixels.
The average inter-frame rotation and translation were 5° and 0.5m respectively.

6.1 Comparison of the LLS and NLS techniques

The performances of the LLS and the NLS technique are illustrated in Fig.2. The NLS
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Figure 2:  Noise sensitivity of the LLS and the
NLS technique in computing the
rotation angle. Depth normalisation
was unbiased. 10 points in 5 frames
were used.
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technique is more accurate than the LLS technique in computing the rotation angle. The
NLS technique exhibits a S-shaped noise sensitivity, whereas the LLS technique
possesses a somewhat linear error curve,

6.2 Comparison of biased and unbiased depth normalisation

The two linear techniques for depth estimation described in Section 4 are compared by
examining the accuracy of the recovered point structures. The SSE curves of the two
techniques are shown in Fig.3. When the noise level is low (e.g., AE < 1.5 pixels), there
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is little difference in the performance of the two techniques. However, when the noise
level is higher, the advantage of the eigenvalue approach becomes clearer.

6.3 Noise reduction with more points

Monte Carlo simulations were conducted to determine the effectiveness of using more
points in combating noise. During the simulations, the number of points in each frame was
increased from the minimum of 3 to 19 in steps of 2. The results for the LLS-Biased
algorithm (i.e., the combination of the LIS technique and the biased depth normalisation
technique) are plotted in Fig.4. The error curves of all parameters are similarly shaped.
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The improvement in performance is most significant when the number of points is
increased from 3 to 5 - errors in all parameters are reduced by more than 50%. Further
increase in the number of points beyond 10 results in little improvement. It should also be
noticed that even with only 5 points, the relative error is no higher than 5.5% for X, 2.7%
for Y, and 28% for the rotation angle (i.e., in absolute terms, £28mm, +14mm, and
+1.4°), and the absolute SSE is no more than 0.16m (note the test cuboid is of size
3x2x1.2 m’).

6.4 Noise reduction with more frames

Another way of combating noise is to use point matches from longer image sequences
(i.e., more frames). Monte Carlo simulations were conducted to determine the
effectiveness of using more frames in noise reduction. During the simulations, the number
of frames was increased from the minimum of 2 to 16 in steps of 2. The results for the
LLS-Biased algorithm are shown in Fig.5. Errors in all parameters are reduced when more
frames are used. The most dramatic improvement occurs when the number of frames is
increased from 2 to 4. This is true especially for the SSE. It also appears that the advantage
of using more frames beyond 8 is very small. It is particularly encouraging to note that
with 10 points in 16 frames, the relative errors are no higher than 1% for the translational
parameters and less than 8% for the rotation angle. The SSF is as small as 0.03m.

It is worth of pointing out that naively, the relative error in rotation angle might
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be expected to be independent of the number of frames used (so the error curve for
rotation in Fig.5 should be flat) since the computation of the rotation angle is done on a
frame basis (see Section 3). Nevertheless, because the relative error is an average taken
across all frames, and because the further a frame is from the reference frame, the more
accurate the rotation angle estimate is (due to the larger magnitude of motion from the
reference frame to the frame under consideration), the error curve shown in Fig.5 is thus
expected.

6.5 Performance with real image data

The algorithms were also applied to compute the 3-D structure and motion of vehicles in
routine traffic images. Segments of two frames from an outdoor traffic image sequence
are shown in Fig.6. We initially tried to use automatic corner detectors (e.g., [10]) to
locate and provide the point matches required by the algorithms. It turned out that the
automatically detected corners were so unstable that they were hardly usable, since the
surface of the vehicle is smooth, the comers of the vehicle are not well defined, and their
positions in the image were affected by self-occlusion and specularities. Therefore, the
corners were located and matched by eye. Eight corner points in 5 frames (sampled at 5
Hz) were identified as shown in the left column of Fig.6 (only two frames are shown due
to space limitation). Although the detection and matching of points was done manually,
there is still significant inaccuracy in the matches because of the low contrast of the
images and the poor definition of the corners mentioned above.

With Frame 200 being used as the reference frame, the 8 point matches in the
five frames are used by the LLS-Biased algorithm to compute the 3-D coordinates of the
8 points and the inter-frame motion parameters between Frame 200 and each of the other
four frames. The global scale is resolved by assuming a known height (=1.0m) of Point
Pg. Because the exact ground-truth is not available, the accuracy of the recovered
structure and motion parameters cannot be measured quantitatively. We hence adopt the
following qualitative assessment.

The accuracy of the motion parameters is measured by the goodness-of-fit
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Figure 6:  Computation of 3-D structure and motion of vehicles in traffic images.
Left column: 8 points in 2 frames; right column: model projection using
recovered motion parameters.

between the image and the projections of a vehicle model. The projection pose for the
reference frame is determined by eye, and the poses for the other four frames are then
derived from the corresponding motion parameters delivered by the LLS-Biased
algorithm. Two model projections are shown in the right column of Fig.6. The fit between
the image and the model is very close in all frames, indicating good accuracy of the
computed motion parameters.

The accuracy of the recovered structure may also be assessed qualitatively by
projecting the point coordinates onto the X-Y, X-Z, and Y-Z planes of a vehicle-centred
coordinate system. The projections are shown in Fig.7, where the grey lines are added to
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Figure 7:  Projection of the recovered 3-D coordinates of the 8 vehicle points
onto the three planes of a vehicle-centred coordinate system.
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help the delineation of the vehicle shape. It is not difficult to relate the recovered structure
to the vehicle. The only obvious oddity appears to be P which is in fact one of the
hardest points to locate consistently due to the self-occlusion of the near-side of the
vehicle (see Fig.6).
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7 Conclusions

Novel algorithms have been presented in this paper for the computation of 3-D structure
and motion parameters of vehicles in traffic images which, under normal conditions, are
constrained to move on the ground-plane. The algorithms use point correspondences in
multiple frames, and directly exploit the ground-plane constraint. The algorithms first
compute the inter-frame rotation angles, then the depths of the points, and finally the
inter-frame translations. Computation at each stage is linear.

The algorithms have been tested with both synthetic and routine traffic images.
Extensive experimental results have been reported. The results have demonstrated the
validity of the algorithms, and have confirmed their satisfactory performance with both
synthetic and real image data.
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