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Abstract

We describe the development and testing of a first-order motion es-
timation algorithm which maintains accurate fixation of features on
surfaces undergoing three-dimensional motion, and determines the lo-
cal affine motion parallax. The accuracy of the first-order flow esti-
mation is much improved by the use of log-polar sampling. We in-
vestigate the contribution of fixation to this accuracy using synthetic
flow, and demonstrate the performance on affine tracking in real image
sequences.

1 Introduction

A great deal of attention has recently been given to active vision — both controlling
sensor motion and taking account of that motion during processing. For active vi-
sion, operating as part of a closed-loop control system, the fast, reliable estimation
of a few important parameters may be more relevant than the fine-grained analy-
sis of more traditional computer vision. Useful parameters are likely to relate to
the sensor’s motion relative to surfaces in the environment, and the orientation of
those surfaces, but will not necessarily constitute a full three-dimensional map of
the environment or a full specification of sensor translation and rotation. For mov-
ing sensors in dynamic environments, fixation (the tracking of an image feature to
stabilise its retinal location) is clearly an important mechanism, contributing to
robustness by reducing the demands on low-level processing mechanisms.

Active vision opens up the possibility of exploiting non-uniform image sampling,
and foveal vision in particular. Despite the fact that many animals have evolved
foveal visual systems, in which acuity varies across the retina, foveal vision has
played little part in the development of computational vision. There appear to
be three main reasons for this: firstly, computer vision has been dominated by
technologies based on image sampling using uniform rectangular arrays of pixels;
secondly, foveal vision, by introducing a region of high acuity, increases the need
for fixation of salient features; thirdly, there is an apparent increase in algorithmic
complexity for some low-level vision operations, such as motion estimation.

BMVC 1994 doi:10.5244/C.8.57



580

The first obstacle may be overcome by the introduction of special-purpose hard-
ware, such as that developed for log-polar sampling by IMEC [7], and in the
meantime is adequately addressed by resampling conventional images in software,
an operation of low computational cost. As pointed out above, fixation is of value
in its own right in the active vision paradigm, and so the need for fixation need
not hinder the use of foveal vision. Indeed, various researchers have shown that
the use of an active vision system can reduce the complexity of visual processing
tasks by supplying constraints which are not present when passively viewing the
environment [1] [2] [4]. Finally, it is increasingly clear that the complexity of non-
uniform sampling is more apparent than real, and that the information carried by
images can be made more accessible when the acuity is appropriately matched to
the structure of the optic array.

We demonstrate here one way in which fixation and motion parameter estimation
can be integrated for a particular type of foveal vision system, using a simple but
reliable computational scheme.

The first-order spatial derivatives of optic flow — dilation, shear and rotation
supply useful information concerning the motions and orientations of surfaces rel-
ative to an observer [10], and are likely to be useful for active vision. (Dilation and
shear are independent of sensor rotations, whilst image rotation is affected only
by sensor rotation about the line of sight and not by pan and tilt movements.)
Log-polar sampled images (LSI’s) are a natural representation for estimating first-
order motion, since the pixel spacing is proportional to distance from the origin,
as 1s the flow speed for pure first-order flow. In addition, the high concentration of
samples close to the origin of the LSI provides a natural way to focus processing
on regions corresponding to coherent surfaces. We have shown that these factors
allow more accurate first-order flow estimation using log-polar sampling than using
the conventionally-sampled image (CSI) directly [8]. Here, we use simultaneous
estimation of first-order and zero-order flow in the LSI to carry out fixation, both
in the sense of tracking a feature using simulated eye movements, and in the sense
of following the affine deformations of an image region during motion relative to
an approximately planar surface.

In Section 2 of this paper we define the log-polar mapping and derive a simple
method for first- and zero-order motion parameter extraction. Section 3 discusses
implementation issues, and in Section 4 we examine the accuracy with which first-
order motion parameters can be extracted using the LSI, both with and without
active fixation, both applied to synthetic and real optic flow. Finally, Section 5
draws some conclusions.

2 Theory

2.1 Log Polar Sampling and First-Order Motion Analysis

Log-polar mapping involves a circularly-symmetric sampling strategy which has a
much higher density at the centre (or fixation) point, and which decreases linearly
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with radial distance (Figure 1). Instead of representing points on the image in
terms of (z,y) coordinates, a point is indexed by a logarithmic distance from the
centre, £, and an angle, v (after [7]), where:

§=log,p—p and y=gqn (1)
Here, p and a are constants which determine the sampling used by the log-polar
mapping, and (p,n) are the polar coordinates of the point (i.e. z = peosn and
y = psinn). For more information on LSIs see [8].

Figure 1: Layout of pixels in log-polar sampling

First-order flow includes only terms linear in image coordinates. Though higher-
order terms are generally present in real flow fields, the zero- and first-order flow
is a good approximation in regions for which the depth variation is small com-
pared to the depth, and where the scene structure can be approximated by a
plane. Rather than attempting to determine a flow vector at each pixel, which
is computationally expensive and ill-conditioned, we estimate the six parameters
of the zero- and first-order flow field directly from spatial and temporal grey-level
gradients, applying the brightness constancy equation — an approach related to [9].

We represent the flow by the Taylor expansion at the origin:

v(r) = vg + Tr + higher order terms (2)

where r is image position, [z y]T, vo is the zero-order flow at the origin, and T is
the deformation rate tensor of first derivatives of the flow at r, which characterises
first-order flow:

T,,_;—arj and T—[192+R D-5, (3)
D is dilation, R, rotation, and S; and S; are the components of shear (i.e.
S; = Scos20 and S; = Ssin26 where 0 is the orientation of the axis of ex-

pansion measured relative to the z axis).
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If fixation can be maintained and the fixated surface is relatively smooth, then
vp = 0 and near the origin the first-order flow terms dominate to give:

v(r) ~ Tr (4)

In this case, |v| is proportional to the distance from the origin, |r| = p, which
suggests that a good strategy for image sampling is to make the spatial sample
separation also proportional to |r|, as in the LSI. The image motion between suc-
cessive frames will then be a constant fraction of the sample separation at every
point in the image. This provides the best basis for integrating information across
a region of the image.

The optic flow field in log-polar coordinates can be related to the conventional
form (5) and combined with (2) to create an expression for flow, up to first-order,
in log polar coordinates (6):
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One equation is obtained for each sample, and it is straighforward to solve this
overdetermined system by least-squares and estimate the vector of unknowns
[bay By DR S So]T-

2.2 The Role of Fixation

Although the method described above provides estimates of the zero-order flow
(vz, and vy,) as well as of the four first-order flow parameters, a large zero-order
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flow will cause the system to fail, because of the fine-grained sample spacing near
the origin. A CSI has the complementary problem: it is well suited to measuring
uniform flow but not first-order flow, because in this case the speed varies greatly
across the image. The solution for the LSI is to use fixation to minimise the zero-
order flow. This requires us to feed back the v, and vy, estimates to a tracking
system, leaving the first-order flow dominant and allowing accurate estimation of
its parameters. Note that no equivalent solution is available to the problem of
flow estimation using a CSI. In the sections that follow, we demonstrate the use
of zero-order flow feedback to improve first-order flow estimation using the LSI.

3 Implementation

3.1 Log Polar Sampling

In the absence of dedicated hardware, conventional images were resampled us-
ing software. The strategy used, like that of other software-based LSI research
(e.g. [5]), needs to balance processing speed with fidelity. Central LSI regions,
with small sample spacings, require bilinear interpolation between the {our nearest
neighbours in the original image, whilst towards the periphery, where the samples
are much further apart, simple averages of the grey-levels in a roughly circular
region of the image, centred on the log-polar sampling point are used. Strategies
are switched at an intermediate point. For the experimental work reported here,
the innermost LSI ring had a radius of 1 pixel in the conventional image, whilst the
outmost radius varied between 30 and 60 pixels. There were 100 radial samples
(rings), whilst the number of angular samples (wedges) was chosen to satisfy the
condition for circular sampling regions, and was typically about 150.

3.2 Controlling Motion: Parameter Extraction Accuracy

Simulated optic flow was used to test parameter extraction. Each image sequence
was generated by subjecting a single conventional image to successively larger
affine transformations. This created realistic motion statistics within each frame,
but with known flow field parameters. Each base image was deformed by incre-
menting the parameters (vz,, vy,, D, R, S1 and Sy) over a total of 5 or 10 frames,
and resampled to form LSI sequences, with an outer radius of 60 pixels. The rel-
ative root-mean-square (RMS) errors between the actual (affine) parameters and
those extracted were then calculated to provide a measure of accuracy. This error
measure compares the average variation between extracted and input parameter
values to the input value to provide a percentage error measure. Tests were carried
out using broad-band artificial textures — binary random dot images blurred with
Gaussians of 2 and 3 pixels — and a range of deformation rates from 0.01 to 0.1
per frame for D, R and S, (0 held constant) whilst v, and vy, varied from 1 to 10
pixels. All the parameters were varied simultaneously, except for an experiment
designed to assess the effect of translation alone, to ensure complex motions were
examined with a realistic degree of interference between motion parameters.
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In the non-fixation case the sampling was centred constantly at the same point
in each warped image, regardless of the image shift (v;, and v,,), whilst the
fixation case fed back these zero-order components to effectively null the shifting
effect using an iterative technique. For each new frame an initial fixation point
was calculated from the shift parameters determined for the previous frame. The
image was then resampled, centred on that initial point and new shift parameters
calculated which were, in turn, used to move the fixation point again (where
necessary). This process was repeated until a fixation point was reached in which
any further movement increased the calculated shift parameters.

4 Results

4.1 Static Sensor Versus Active Fixation

The results are presented in graphical form in Figures 2 to 6 for each parameter
in turn. The degree of deformation is represented on the z axis, whilst the y
axis indicates the normalised RMS error. Within the graph legends texture2(3)
refers to random texture with Gaussian blur using a standard deviation of 2(3),
and f5(10) refers to the number of frames over which the RMS is calculated. For
the non-fixation case the error in the extracted parameters increases sharply with
increased image motion whilst the fixating case has a significantly lower error rate
over a far wider distortion range, as expected. However, it is necessary that the
vz, and vy, components are accurate enough to give an initial estimate of the di-
rection in which to perform the tracking and this level of accuracy starts to reduce
above image shifts of about 3.0 pixels/frame.

We investigated the performance of the method on pure translational flow, in order
to assess the range of image speeds over which fixation could be maintained in the
absence of first-order deformation (I'igure 7). The reduction in error due to an ab-
sence of first-order motion is apparent up to shifts of between 4 and 7 pixels/frame,
dependent upon the image spatial frequencies. However, at higher speeds, track-
ing breaks down abruptly. This is probably due to the minimisation technique
used to determine the feedback for active fixation which, like most such methods,
becomes increasingly less accurate as the minimisation surface becomes flatter - a
situation which occurs as the image shifts become larger and the parameters more
random. Interestingly, the effect of spatial frequency on motion perception ability
observed in this experiment mimics that obtained in recent psychophysical tests
using similar blurred random textures and simple motion shifts [6], which revealed
that increased spatial blurring increases the threshold of displacement shift in ap-
parent motion perceivable by the human visual system. The variation in tracking
accuracy between images, which is also affected by the positioning of the LSI cen-
tre — in that centering on a uniform image region supplies a large proportion of
image sample points with uninformative input signals - is reduced in the presence
of more complex motions where parameter extraction starts to breaks down at
around 3-4 pixels/frame. Therefore, as long as the temporal sampling rates are
kept high enough to ensure image shifts are kept at a couple of CSI pixels/frame
at the point of fixation this tracking scheme is acceptably accurate.



585

Normulised RMS Error x 102 Normalised RMS Error x 102
000 1 12000
7500 vk 000
1
7000 by
6500 . 1ooce
000 ] 90.00
5500 Ty B0
000 1
45.00 o ot
40,00 ks 60.00
3500 ‘e“ 0,00
000 o
40.00
2500 —
000 — 30.00
1500 b, 20.00
10.00 o=
10,00
500
[ T om
om 100
Deformation Rate

Figure 2: Dilation Extraction Accuracy  Figure 3: Rotation Extraction Accuracy

RMS Error (Degrees)

Noarmalised RMS Error x 102

mo g e 1 000 b Theta ! *\‘;j—
7500 b— — W00 fr <t
70.00 %00 b hd
6500 2400

&0.00 000

5500 .00

0,00 1800

4.0 1600

a0

3500

il Mmentn

& textare3, 110, nondix

20.00 -E‘ e
1500 =% b d A
1000 b M K LI s
M B ! nistrariolBG B 000

050 1.m

Deformation Rete
Figure 4: Shear Extraction Accuracy Figure 5: Theta Extraction Accuracy

Normalised RMS Error
100 b= i s

Zero-Order Flow

090 b

080 -

o070 b

g
|

¥ lexture 215, nonfix
—
textare 3,15, nonfix

i i

1000

s00
Deformation Rase

500
Deformation Rate

Figure 6: Shift Extraction Accuracy Figure 7: Tracking Accuracy



586

4.2 Real Image Sequences

The tests discussed above are applied to pure affine motion. For a more realistic
test of performance the method was also applied to real image sequences consisting
of multiple surfaces at different depths, to determine how well such an approxi-
mation holds in reality. Figures 8, 9 and 10 show the performance of the method
applied to image sequences obtained from a moving camera.

Figlll‘e 9: Example of Fixation during Panning

Figure 10: Example of Fixation during Sideways Translation
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In each case, the images shown are the first and last images of a 20-image se-
quence obtained with a smoothly moving, but not accurately controlled, camera.
The images were processed using zero-order flow feedback to control fixation, as
described above. The dots (added after processing) indicate the initial and final
fixation points. Only successive pairs of frames were processed together, so that
errors in tracking were cumulative over the sequence. In each case, the tracking
accuracy is good. The three sequences are dominated by dilation, translation and
shear image motions respectively, corresponding to camera approach, panning and
sideways translation.

The right-hand frames show the image edges from the last frame of the sequence,
superimposed on the edges of the first frame, transformed according to the es-
timated first-order flow parameters. For the first two sequences, the estimated
parameters from frame to frame were combined to give a single affine transforma-
tion which was applied to the first image. In the dilating case, it can be seen that
whilst good, the fit is not perfect, but this is inevitable since the visible objects do
not lie in a single plane, and so an affine transformation can only be an approxi-
mation. In the panning case, overlap is only possible for a small part of the image;
this is the part to the left of the slanting line, which represents the transformed
right-hand side of the first frame. In this region, the match is very close. The
transformation from the first to the last frame of the shearing sequence is not well
approximated by an affine transformation, and so the first frame was successively
deformed by each set of flow parameters to obtain the edges shown superimposed
at the right. The slanting lines are the distorted edges of the first frame.

In all three examples, almost the same set of edges is visible in the first and final
frames, so the edge maps show a good degree of matching. We emphasise that
the flow was estimated only for successive image pairs, so that the match of the
transformed first frame to the last frame includes accumulated errors from 19 es-
timated transformations.

An accurate quantitative test on a real image sequence requires calibrated camera
motion; we hope to carry this out in the future.

5 Conclusions and Future Work

The sample spacing in a log-polar sampled image is matched to the speed of first-
order optic flow: both are proportional to distance from the origin. Provided that
fixation is implemented to null the zero-order flow, the LSI spacing is therefore
matched to the dominant optic flow component for local image regions. Since in-
creasing sample spacing with speed clearly makes sense, the good performance of
the LSI is expected, and was demonstrated by direct comparison with a conven-
tional sampling approach in [8]. Here, we have explicitly shown the contribution
that fixation makes to the performance, and we have demonstrated the ability of
the method to carry out affine tracking on real sequences of images.

The future aims of this work include the integration of first-order motion over
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time and space in an effort to obtain qualitative information of both sensor mo-
tion and the motion of independent objects, and a more detailed analysis of how
the stimuli used effects the performance of the sensor. Also, in most real-world
situations, motion segmentation is required to ensure that image regions belong-
ing to coherently-moving surfaces are analysed correctly. A motion segmentation
scheme based on first-order modelling is thus also under development.
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