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ABSTRACT
The discontinuities and the large image dis-
placements pose some of the hardest prob-
lems in flow estimation. This paper uses a set
of filters that change shape to avoid blending
of the constraints across discontinuity bound-
aries. This is done by using an incompatibility
measure of the constraints of neighbouring
pixels. The algorithm is embedded in a coarse
to fine multigrid scheme to address the prob-
lem of large displacements. We report results
on real images which show that the algorithm
works very well.

1. Introduction
There are several approaches to

the problem of flow estimation in
computer vision and several ways to
classify them. An important class of
them are based on point matching
[10, 15, 14] etc and another on region
or curve matching [3, 2, 8, 20, 12]
etc. The algorithms that are based on
spatiotemporal filtering [7, 9] etc can
be regarded as region based algo-
rithms because they are matching in
effect regions of the image the size of
the convolution kernel. The same
classification is valid for the hierar-
chical methods [1, 23]. Several

articles analyze the limits of various
approaches [19, 11, 6, 4] the most
unique being that of Barron et al
because they report a tremendous
amount of experimental data for pub-
lished algorithms.

An important class of algo-
rithms uses as starting point the
detection of discontinuities [5, 15,
18] which is quite a hard problem. In
this paper we follow an approach that
circumvents the need to detect dis-
continuities. Instead we try to com-
pute the flow everywhere but be care-
ful not let the filters we touch sus-
pected discontinuities. For this reason
we introduce a class of conforming
filters that can take any unusual shape
to avoid regions of the image that
have large variations in the behaviour
of the constraints. We also introduced
a means to recognize these areas. In
the end of the execution, the algo-
rithm does not report the existence or
not of discontinuities but a quite
accurate flow that remains accurate
within very few pixels off the discon-
tinuity.
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Considering the progress in
optic flow during the last several
years, it is impossible to design an
algorithm that is based in one idea
only, like conforming filters, without
including and improving previous
ideas. Considering this, we used as a
starting point the Lucas and Kanade
algorithm [12] which, although very
simple, works very well [4]. To this
we added conforming filters and
embedded it in a hierarchical scheme
where the coarser grids provide a
guess for the finer ones. To be able to
accommodate the guess without
much additional cost we used a
method similar to [21, 13].

The idea itself of the
deformable filters is not new [17] but
this particular approach needs only a
few convolutions with uniform filters
(a uniform filter can be implemented
as a running sum, so the cost is small)
yet it can achieve a remarkable vari-
ety of point spread functions.

2. Region matching
The most common constraint

for flow estimation comes from the
"constant intensity" assumption
where every pixel in one image is
matched with a point in the other
image (which might fall between pix-
els) that has the same intensity. The
simplest mathematical formulation of
this constraint is the optical flow
equation

/,=0 (2.1)

where Ix, Iy and /, denote partial
derivatives with respect to x, y and t
respectively and u and v are the

components of flow in the x and y
direction. This equation alone is not
enough to recover of the flow, but it
is nevertheless the basis of most of
the constraints used.

The principal reason that point
matching Eq. (2.1) is not enough is
that it represents one equation for two
unknowns which forces us to seek an
alternative like region matching. The
method by Lucas and Kanade [12] is
using such an approach and, as men-
tioned before, works very well and is
fast and local. We present the method
here using our own notation and then
built upon that to develop an equally
fast but more robust solution.

First, we have to note that if we
introduce more constraints then it
might be impossible to satisfy Eq.
(2.1) and we have to use a least
squares approach. Second, if we
assume that a small region moves
uniformly then Eq. (2.1) should be
satisfied everywhere in the region.
We form the error term for a region R

0, yO\ X, v) = Ix[x, y]u[x0, V0]
(

Iy[x,y]v[x0,y0] + I,[x,

0 ]
(2.2)

where x0, y0 is the center of the
region and x, y is a point within the
region and we minimize the sum of
the squares of lerr over the region R
around xQ, y0

min SSE[x0, y0] =
U, V

min £
u'v x,yinR

We form the Euler equations for this
minimization
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Pu= X (Ix[x,y]Ix[x,y]u[xo,yo]+ and
x, y in R

, y]Iy[x, y] v[x0, y0] + Ix[x, y]I,[x, y]

Pv= Z \fx[x,y]Iy[x,y]u[x0, y0]
x, yinR

Iy[x,y]Iy[x,y]v[x0,y0] + Iy[x,y]I,[x,y]

and the actual constraints are pu = 0
and pv=0. The observation that
makes this method efficient (and flex-
ible) is that the summations like

( X hU,y]ly[x,y])
x, y in R

are convolutions with a uniform func-
tion. A generalization that suggests
itself is to try to convolve with any
template not just the uniform. The
template has to be zero or positive
everywhere, otherwise the implicit
matrix of the minimization is not pos-
itive definite. The Euler equations
then become

xy"

(2.3)
yy

E(g\ = Exy®g and g is the filter.
F — I I F — I I F — I I
^xx Lx x^ *-"xy ixiy> yy y y>

Ext = hh a n ( i Eyt = lyh w& m e coef-
ficients of the Euler equations in [10].
The equations for every pixel are
independent from other pixels so £ „ ,
Ejy etc represent a collection of 2 x 2
matrices and 2 x 1 vectors of knowns

^xx ^x

~l

where A(g) = A@g, b(s) =

We can view A and b either as a
matrix and a vector whose elements
are images or as images every pixel
of which is a matrix or a vector.
Either way it is easy to define the
operations of addition, multiplication,
convolution, differentiation etc. Eq.
(2.3) then becomes

(2.4)

and

The choice of filter g represents
a trade off. In general if the support
of the filter (the area where the tem-
plate of the filter is non zero) is very
wide then a larger area is matched
resulting in more stability, at the
expense of accuracy because the area
might cover a region of highly
nonuniform flow. If, on the other
hand, the filter is very narrow then a
small area is matched that might not
contain enough interesting features to
lead to stable equations. So a choice
of filter can be good for a part of an
image but not good for the rest. The
solution then is to use a family of fil-
ters that differ in scale (and shape)
and apply different filters in different
parts of the image.

The filter regardless of its scale,
has to be as localized as possible for
a given scale, easy to do the convolu-
tions over different scales and easy to
manipulate analytically. The filter we
choose as a basis to start is the
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Gaussian and then show how to move
to a more general class of filters.

2.1. From Gaussian filters
to adaptive filters

It is well known [16] that if we
convolve an image with a uniform
function several times, the result is
indistinguishable from a convolution
of the same image with a Gaussian.
In fact, this is true even if we replace
the uniform filter with almost any fil-
ter. The variance of the Gaussian a1

is the sum of the variances of the
individual filters. This is the well
known Central Limit Theorem and
suggests the following algorithm for
the computation of the convolution of
the Gaussian:

• Convolve the image with a uni-
form function Ukv of width kv

columnwise.

• Convolve the resulting image
with a uniform function Uk/i of
width kv rowwise.

• Repeat the above n times.

Every convolution with a uniform
function in either the vertical or hori-
zontal direction requires about one
addition and one subtraction irrespec-
tive of the width and one multiplica-
tion per pixel in the end if it is imple-
mented as a running sum where we
add in the front and subtract from the
back. So the above algorithm does
not require more floating point com-
putations than a regular Gaussian for
a rather big.

Now assume that we know
somehow which parts of the image
require wide a filter and which a

narrow. For this purpose we are given
four images wvU wv2, whi and wh2

every pixel of which contains 0 or 1
depending on whether we need filter
with the corresponding width and
direction. So we arrive to the con-
forming filter algorithm.

• For image / compute
rv = (I®UKl)wvl+(I®UkJwv2

• Then compute
rh = (rv®Ukhl )whX + (rv®UkJwh2

• Set / = rh and repeat the above
n times.

It is easy to see how the above algo-
rithm can be generalized to a larger
collection of filter widths. We can
also vary the weights of the filters in
each iteration. Although the algo-
rithm is very similar to the one that
computes the standard Gaussian, the
resulting filters are very different
(Fig. 1). In the next section we
develop the criteria for the local
choice of filters.

2.2. Determining the size of
the filters

The size of the filters should be
governed by the following considera-
tions.

• The size should be bigger when
the flow is varying very little.

• When the equations are unsta-
ble then the size should become
bigger to stabilize the result.

We could use the derivatives of the
flow as an indicator of the size of the
filters. The higher the magnitude of
the derivative the smaller the filter.
But this would run contrary to the
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Figure 2.1b The top image controls the width of
the filter. The white blocks are areas where
the filter should have small support and the
black area large support. The point spread
function of a bright point placed in the midpoint
between the tips of the white squares is shown
on the bottom.

second criterion when the reason for
the high variance in the flow is the
instability, so the use of flow deriva-
tives is ruled out.

A better approach is to look at
the constraints themselves. We notice
that when we convolve the coeffi-
cients of the normal equations then
we create a new set of constraints
that in general give different result. If
we plug the new result in the original
equation then we get a non zero

residual that means that the equation
is not satisfied. The residual will be
very small if the flow is very smooth,
because in a sense we mix similar
equations. Also the residual will be
very small if the equations are unsta-
ble because unstable equations con-
tain very little information and can be
satisfied by almost anything. We call
this residual the incompatibility mea-
sure.

Let's use a Gaussian filter
g(x,y\a) where a is the standard
deviation. Without loss of generality
assume that the Gaussian is along the
horizontal (x axis) component of the
separable kernel. It is implied that
A(x) and b(g) are now functions of a.
The quantity

is zero because [ A(g)u(a)-b(g) 1=0.

Thus

Aig\u(a) - b(g)
a + A(g)ua(a) = 0

and so the incompatibility measure
becomes

- b(8) + A{g)du\ = \A(g)du\ =

a • da\ = \(A{g)
au-b(g)

a)da\

A property of the Gaussian that is
used often in computer vision is that
the derivative of a Gaussian with
respect to a is proportional to its sec-
ond derivative with respect to the
spatial argument, in this case x. So
finally
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where A' 8^ is the second derivative
with respect to x of the convolution
of matrix A with the Gaussian g{a)
and similarly for b(g) ^ .

The criterion for the selection
of a filter with width k is k • c < t,
where t is a threshold.

2.3. The algorithm
There are a couple more details

missing. Since nothing changes if we
multiply both A(g) and b(g) with the
same number we have to make sure
that the algorithm is not affected by a
scale factor. So we divide cv and ch

by the Frobenious norm of A(fi). It is
easier to compute cv

2 and ch
2 to avoid

taking the square root. And finally
instead of thresholding k • c it is eas-
ier to compute the weights of the fil-
ters

Integrating all the above, the algo-
rithm becomes

1 Set A = A®g for some filter g
with small support and b = b®g.

2 Compute u = A~'£ and then ch

and cv and then wvi and whi for
the set of uniform functions
with widths kvi and khi.

3 Convolve the elements of A and
b with the corresponding set of
uniform functions and form the
weighted sum using the weights
wvJ and whJ.

4 Repeat steps 2 and 3 n times.

For the experiments n was 3, and the
widths of the filters were 3, 5 and 11.
This algorithm works very well for
images that do not have large dis-
placements, is accurate in areas of
smooth flow and retains its accuracy
up until very close to discontinuities.
Using iterative improvement and
hierarchical approximation we can
improve the performance even with
large displacements.

3. Iterative improvement
The idea is simple. If we have a

guess for the solution then we can
warp the first image and solve the
flow problem between the warped
image and the second image. Assum-
ing that the guess is not misleading
we then have a simpler flow problem
to solve. But there are two problems
in this approach. One is that warping
is not cheap and it may introduce
noise of its own. The second is that
then we work with the residual of the
flow not the flow itself. This will not
work well with other constraints that
need the actual flow (like smoothness
constraints, structure from motion
constraints etc). The first problem we
can solve by rounding the guess to
the nearest integer and using this to
warp the image. Integer warping does
not cost much in terms of CPU. The
other problem can be solved by
appropriate mathematical manipula-
tions.

Let's use the notation W[I,ug]
to denote an image warped by ug.
We also use one dimensional image
to simplify the derivations. Extension
to two dimensions is straightforward.
The time derivative /, is not /2 - 1 \
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anymore but /, = l2-W[Iuug] where
ug is the (rounded) guess for the flow.
The optic flow equation becomes

Ixur + (I2-W[Iuug]) = 0

where ur is the residual of the flow
we seek. To avoid working with the
residual we add and subtract Ixug and
we get

Ixu + (I2-W[Iuus]-Ixug) = 0

where u-ug + ur. The spatial deriva-
tives then become

real images.

For the experiments we used two
image sequences with two frames
each. The one is the NASA sequence
with the camera moving towards a
coke can (Fig. 1.) and the other is
from the CMU's Calibrated Image
Laboratory that is the scene of the
model of a castle and the camera
translates horizontaly in a direction
parallel to the image plane (Fig. 2.).
We display the result in mainly two
ways. One is the standard needlemap
and the other is the inverse magni-
tude map. This is bright at places
where the flow is small and dark
where it is large.

4. Hierarchical
computation

The issue of hierarchical com-
putation is quite old in flow estima-
tion. The idea is to reduce the image
to half the size and estimate the flow
(recursively up to some maximum
depth) on the reduced image. Then
this result is used as a guess. The
main difficulty and the main cost is
the actual reduction that has to be
alias free. We found that if the spec-
trum is reduced to less than half the
Nyquist limit so that the aliasing is
negligible then the rresults were
much better.

5. Experiments
We conducted experiments with

real and synthetic images. The results
from the synthetic images were per-
fect (but then, they were designed to
work well with this algorithm). We
report only on the experiments on

Figure 5.1 The first and fifth images of the
NASA coke sequence.

Figure 5.2 The third image of the castle se-
quence. As a second image in our experiments
we used the forth image. The displacement
varies between 20 and 30 pixels.
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5.1. NASA sequence
This sequence was designed for

experiments in optical flow estima-
tion and structure from motion. At
every point the displacement is less
than one pixel per frame and the
scene contains several discontinuities
and specular reflections that give rise
to transparency phenomena. For this
image we did not need the hierarchi-
cal component of the algorithm
because the displacements were
small.

5.2. Castle sequense
The castle sequense was

designed for camera calibration and
not for optical flow. Thus the dis-
placements are unusualy large. The
images contain several discontinuities
but no specular reflections. At several
places the main linear features are
parallel to the direction of flow

• / * / > -** 1 1 I
t S / S / t / t f f
/ / t fS *•/ / i I

S//// ' ' ' i t '
*//////f/1 I I
• ' / / * ' / / / / / t i t
**<////// t i t

\ 1 M SSS
Ml 1 ̂  U \ M \ \ \ * \ \ \^x^N>'

/ / / "Jt^</ 1 W W \ W W W Vi
il 1 \ \ \ \ \ \\W\ W \ \ \ W \ \

Figure 5.3 The needlemap of the coke se-
quence. The flow vectors are mostly trained to-
wards the focus of expansion. The flow is
meaningfull even in part of the hole of the
mounting bracket at the lower left side of the
image.

Figure 5.4 The inverse of the magnitude of the
flow of the NASA sequense. It is consistent
with the distance of the objects from the cam-
era and from the focus of expansion. The pen-
cils are widened by 2-4 pixels on each side.
The flow on the wires on the left side of the left
pencil and the right side of the right pensil is
clearly visible.

giving rise to the apperture problem.
For this image the vectors in the nee-
dle map are all horizontal and no
interesting deductions can be made
from it. The inverse magnitude
though is extremely interesting
because due to the direction of trans-
lation it is proportional to the depth.
The house in the left foreground is
dark and its side wall is progrssively
brighter, the trees on its right are
clearly distinguishable, the different
levels of the wall are also visible. The
cylindrical shape of the wall is appar-
ent. The flow of the tower in the far
background is blended with the dot-
ted white wall of the lab in the places
between the dots while at the dots the
flow is consistent with the distance to
the wall. There are a few places
where the inverse magnitude is



incorectly very dark or very white
due to the apperture problem.

6. Conclusions
We presented a simple and

practical algorithm for optic flow
estimation. The main qualities of the
algorithm are that it computes the
flow very accurately in the places
with sufficient variation in the gray
level, computes the flow up until very
close to a discontinuity, if both sides
of the discontinuity have sufficient
variation in the gray level, works well
with extremely large displacements
(we tried up to 30 pixels displace-
ment in a real image) and achieves
very stable results using two frames
only.

Credits
The coke can images are from

the "NASA sequence" by Banavar
Sridar and it was part of the standard
image sequences of the Workshop on
Motion 1991.The castle images are
from the Calibrated Images

Figure 5.5 The inverse of the magnitude of the
castle sequence. Due to the direction of trans-
lation this is proportional to the depth map.
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Laboratory at CMU. The algorithm
was implemented on MediaMath
[22].
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