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Abstract

A standard method to perform skeletonisation is to use a distance
transform. Unfortunately such an approach has the drawback that
only the Symmetric axis transform can be computed and not the more
practical smoothed local symmetries or the more general symmetry set.
Using singularity theory we introduce an extended distance transform
which may be used to capture more of the symmetries of a shape. We
describe the relationship of this extended distance transform to the
skeletal shape descriptors themselves and other geometric phenomema
related to the boundary of the curve. We then show how the extended
distance transform can be used to derive skeletal descriptions of an
object.

1 Introduction

Skeletonisation is an image processing operation which reduces input shapes to
axial "stick like" representations. It has many applications ranging from prepro-
cessing for optical character recognition to use as a shape descriptor in complete
object recognition systems. Shape descriptions of this kind are also the subject of
renewed interest in the context of robot manipulation and grasping of objects [4].
There are many types of skeletal shape descriptor and many ways in which they can
be computed. Of particular note are the family of shape descriptors based on bi-
tangent circles which include the Symmetric Axis Transform (SAT) [5], Smoothed
Local Symmetries (SLS)[6], Process Inferring Symmetry Analysis (PISA) [12] and
the Symmetry Set (SS)[9]. Differences within this family occur due to what bi-
tangent circles are allowed to contribute to the skeleton and where the skeletal
point is drawn in relation to each circle. Of the many methods which can be
used to generate these and other skeletal shape descriptors most can be put into
four categories: Iterative erosion of the shape boundary i.e. thinning, [11], wave
propagation from the boundary [5], detection of "local maxima" on a distance
transform [1], and analytical methods, for simple shapes, following some form of
function approximation, e.g. polygon approximation [6].

1.1 The distance transform approach to skeletonisation
The idea behind the distance transform approach is explained in figure 1. If we

wish to obtain the symmetric axis transform of the tee shape in figure la then we
first obtain its distance transform as in figure lb. This assigns a value to each pixel
within the shape equivalent to the distance of that pixel to the nearest point on
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Figure la shows a Tee shape. In figure lb we see its distance transform, this assigns
a value to each pixel within the shape equal to the minimum distance from that pixel
to the shape boundary. The Symmetric Axis Transform of a Tee shape, figure lc,
corresponds to the "local maxima" of the distance transform.

Figure 1: The relationship of the SAT to the distance transform

the border. The symmetric axis of the figure corresponds to the "local maxima"
of the distance transform as can readily be seen by comparing figures lb and lc.

(a) (b)

Figure 2: Limitations of the Symmetric Axis Transform
Figure 2a shows the SAT of a rectangle which is the locus of bi-tangent circles which
are contained within the boundary. Figure 2b demonstates that there are many other
symmetries which could be expressed.

The main drawback with the distance transform approach to skeletonisation
is that it can only produce the Symmetric axis transform (SAT) which does not
capture all the potential symmetries of a shape. The SAT is the locus of centres
of circles bi-tangent to a shape boundary and contained completely within that
boundary. In figure 2a we see the SAT for a rectangle, in figure 2b we see the
extra symmetries created if all bi-tangent circles are allowed to contribute to the
skeleton. In the SAT certain skeletal features are suppressed by the proximity of
other boundary segments in a way which can seem counter intuitive. This can be
important if the skeleton is to be used in an object recognition system. The pres-
ence of an occluding boundary for example can suppress symmetries which would
otherwise contribute to the skeleton. This is one reason why the computation of
skeletons which capture more symmetries than the SAT is a worthwhile goal.
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We address the problem of performing skeletonisation using a distance transform.
Our main contribution is to present an extended distance transform derived using
standard techniques from singularity theory. We demonstrate how this extended
distance transform can be used to derive skeletal shape descriptors which capture
more symmetries of a shape than can be acquired by the standard distance trans-
form approach. We suggest that studying distance transforms and their role in
skeletonisation from the point of view of singularity theory provides an interesting
perspective with many valuable new insights.

2 The extended distance transform

Inclined normal

generating extended

distance transform

Normal in plane

Object boundary

Figure 3: Intuitive explanation of the extended distance transform
We can imagine the extended distance transform being generated by a normal inclined
at 45 degrees to the plane as it is swept around the boundary of a shape.

2.1 An intuitive explanation

A central assumption of the distance transform approach is that skeletal axes
correspond to the "local maxima" of the Euclidean distance transform. A mathe-
matical analysis of this assumption from the point of view of singularity theory [8]
is given below which leads to the introduction of the extended distance transform.
However, before embarking on a formal theoretical analysis we feel it is instructive
to give an intuitive description of the extended distance transform. Consider a
point on a smooth curve as in figure 3. We can imagine tracking this point as
it traverses the curve and making note of its inward normal which would sweep
across the plane. Now consider this normal raised at an angle of 45 degrees to
the plane so that its height above the plane encodes distance along the normal
from the boundary. As this new inclined normal is swept along the curve it acts
as a generator defining a surface in the space above the plane. It is this surface
which is the extended distance transform or, as will be defined shortly, the discrim-
inant. Figure 4 shows the extended distance transform or discriminant of a circle.
It consists of a lower cone which corresponds to the ordinary Euclidean distance
transform but extends above this to form another inverted cone. It is this upper
portion which has the potential to interact with surfaces from other parts of the
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contour and thus define symmetries other than those of the SAT. In figure 5 we
see the surface generated by a parabola. There are two significant type of "event"
on this surface, i.e points where the surface appears "creased" and points where
two smooth portions of the surface intersect. The creases correspond to the evo-
lute of the curve which is the locus of centres of curvature and the intersections
correspond to the skeletal symmetry points.

2.2 Theoretical Analysis
Let j(t) be a regular parameterization of a curve, which we can assume to be unit
speed for simplicity of calculation. (That is, || (j'(t)) || = 1, where the prime
denotes differentiation.) The function

f(t,x,y)=\\1(t)~(x,y)\\

measures the distance from the point f(t) of the curve to the general point (x, y) in
the plane. (Compare [8, p.33], where the square of / (the 'distance-squared' func-
tion) is used. The only purpose of squaring is to make the function differentiable
when (x, y) lies on the curve, and for our purposes we can ignore this problem.)

We also consider the family F of functions as follows:

t,x,y>—

The critical set S of F is the set of points t, x, y where the Jacobian matrix
of F is singular. This is the same as the set of points where / has a critical point,
and this occurs precisely when x,y lies on the normal to the curve at 7(2). (See
[8, p.33].) Thus

The critical locus or discriminant A of F is defined by

This is a subset of the target space RxR 2 .
To see how this relates to the intuitive explanation above, fix t. In E there is a

line / of points, namely the normal at f(t) but raised to height t. The image F(l)
is a line whose projection to the (x, y)-plane is still the normal line. But F(t, x, y),
for (t,x,y) £ /, is raised above this normal line to a height equal to its distance
from the point (0,j(t)) at the foot of the normal. Hence the image F(l) is a line
through (0,7(2)) at 45° to the base plane t = 0.

The surface formed by the 45° lines is a ruled surface and will usually have
singularities. The circle (Fig. 4) is a rather un-typical case here in that all the
lines actually pass through a common point. A more typical case is that shown in
Fig. 5, where the surface has cusp edges and a swallowtail point.

It is our task first to characterise the singularities of the discriminant surface
and then to outline methods for detecting them.
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Xaxis

Figure 4: Discriminant for a circle
The discriminant can be thought of as normals to the original curve rising from the
plain at 45 degrees. For a circle the discriminant looks like two cones with a solitary
singularity at their common apex.

We use Singularity Theory to define the type and position of singularities which
occur on A. The critical set £ is a smooth surface and so A can have only (i)
'multi-local' and (ii) local (or intrinsic) singularities. We proceed to describe these
in turn.

2.3 Multi-local singularities

Multi-local singularities are caused by two points of £ mapping to the same point
of A. That is, there exist points (ti, 2:1,2/1), (^2)^2,2/2) £ £ with F(ti,xi, 2/1) —
F(t2, X2,2/2)- This clearly requires X\ = 2:2 and y\ =2/2, so corresponds to two
normals of the same length, intersecting at (2:1,2/1). (The lengths are measured
from the 'feet' 7(^1), 7(^2) of the normals to the intersection point.)

Equal length normals intersect in the centres of bi-tangent circles, that is,
circles tangent to 7 at two points, namely 7(^1) and 7(^2). Thus the points {x\, y\)
generated in this way are part of the Symmetry Set ([9]). The point (£1,2/1) will
also be part of the Symmetric Axis Transform, if the equal normals are the shortest
normals from (x, y) to the curve.

2.4 Local singularities

Local (or intrinsic) singularities of A are images of points [t,x,y] £ S where the
map F | S (that is, F restricted to the smooth surface E) It turns out that F |E is
singular when (t, i , t / ) 6 S and (2:, y) is at the centre of curvature of 7 at y(t). (The
calculation for this is almost identical to that in [8, p.33].) This means that (x, y)
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is on the evolute which is the locus of centres of curvature (See figure 5). Note
that F(t, x, y) only belongs to the Euclidean distance transform when the distance
along the normals from (x, y) to f(t) is the shortest among all normals through
(x,y). In fact this never happens on the evolute except at cusps (corresponding
to maxima and minima of curvature).

1.5

-0.5

Yaxis Xaxis

Figure 5: Discriminant for a parabola
The discriminant for a parabola shows a "swallow tail" surface. Above the discrim-
inant is drawn the parabola complete with evolute (dashed line) and symmetric axis
(straight solid line). The central symmetric axis corresponds to points of multi-local
symmetry on the discriminant, the evolute corresponds to intrinsic singularities which
are along the cusped edges of the "swallow tai l". The only intrinsic singularity to
have a minimum normal distance and therefore to be on the symmetric axis is that
corresponding to the cusp on the evolute (asterisk).

2.5 Relevance of analysis

The above analysis is of relevance for three reasons:

1. Singularity theory tells us exactly what type of singularity can
exist, under what conditions they occur and their local structure
[8, 7, 3, 2].
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2. In the literature the artifacts on the Euclidean distance trans-
form which correspond to skeletal points are commonly called "lo-
cal maxima" [1]. This is a misnomer as strictly speaking they are
not local maxima of any variable in the usual sense. Using singu-
larity theory in this context these artifacts can be described simply
and formally as singularities of the distance function.

3. The discriminant can be thought of as an extended Euclidean
distance transform as it contains the EDT but also describes dis-
tances along normals which are not minimal. The description of
singularities in such cases enables us to detect smoothed local sym-
metry and symmetry set points. This fact is exploited to advantage
in the next section.

3 Computing the discriminant

The process of going from raw image to skeletal description involves three main
stages: preprocessing, computation of discriminant and detection of singularities
on the discriminant.

3.1 Preprocessing

The input to the algorithm is a grey level image. Edge segments are found using a
Canny edge detector and the edge segments from this are chained together using
a simple linker. These edge chains are then approximated by cubic B-Splines.

3.2 Computation of Discriminant

We consider the discriminant to be formed from separate smooth sheets. We
first dissect the discriminant into these separate sheets and then compute normal
distances to all points on these sheets. To dissect the discriminant we compute
the evolute of the curve and the curvature extrema. We isolate those parts of
the discriminant bounded between two consecutive positive curavature extrema
and their corresponding evolutes. These curves are in the form of polygons with
floating point vertices. We use a scanline conversion algorithm to find what pixels
lie within the boundary of this segment, this registers the sample points to the
underlying pixel grid so that heights of the discriminant sheet can be compared
with other sheets. For each pixel within the discriminant segment we then find its
normal distance to the boundary. At the moment we do this using a root finding
algorithm due to Schieder [10].

3.3 Detection of singularities on the discriminant

Once we have computed the discriminant all that remains is to detect its singu-
larities. There are two types of singularity, the intrinsic singularities where the
discriminant looks "creased" and multi-local singularities where two smooth sheets
apparently "intersect" one another. The intrinsic singularities correspond to the
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evolute which has already been detected so the only real problem left is to detect
the multi-local singularities. There are many alternatives to find these multi-local
singularities but in this initial scheme we choose the simplest which is just to find
which sheets of the discriminant overlap i.e. which cover the same part of the
image plane and then to see which of the pixels within these sheets are at the
same height by comparing each corresponding pixel. Those which have the same
heights within a small threshold are marked as skeletal pixels.

3.4 Experimental results

Figure 6 depicts a very simple shape to explain how the discriminant is dissected.
The numbers denote the control polygon of the round spline boundary. The evolute
is the cusped curve inside the shape. One sheet of the discriminant is shaded in
between two consecutive positive curvature extrema (asterisks) and the evolute.
This comprises of two shaded areas because there is a spline boundary between
the extrema. There are a further two partially overlapping segments to be shaded.

02

O1

O4

Figure 6: Dissection of Discriminant
Simple spline object (round shape) with control polygon denoted by numbers. Within
the shape we see the evolute and one section of discriminant shaded. Section is
bounded by positive curvature extrema (asterisks) and evolute.

Figure 7 shows the result of applying the extended distance transform to the
skeletonisation of a wrench. In addition to the standard SAT branches running
inside the wrench other symmetries are made explicit. Extra branches are formed
in the jaws and the end to end symmetry of the jaws is captured by large lateral
branches.
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Figure 7: Skeleton of wrench produced by extended distance transform
The skeleton is superimposed on input image. Large lateral branchs are produced
denoting the end to end symmetry of the jaws. These would be suppressed in the
SAT.

4 Discussion

The method we have used for computing the discriminant is accurate but rather
inefficient. Our main concern to date has been to prove the principle of our
algorithm, however if this technique is to be viable we need a more efficient method
for deriving the discriminant surfaces and detecting their intersection.

One approach would be to compute each smooth surface of the discriminant
using separate constrained distance transforms. Constrained distance tranforms
are used in the literature for tasks such as path planning. These algorithms tend to
be more complex than ordinary distance transforms particulary when the distance
is propagated from many source pixels. This problem may be circumvented if we
take advantage of certain constraints which apply in our case. If an evolute has
an inflexion then the corresponding involute (the shape boundary in this case)
will have a cusp. By the converse argument if the involute is smooth (which is
one of our assumptions) then the evolute will never have an inflexion. So for any
section of evolute running between two cusps the curvature of the evolute will have
constant sign. This means we can use an ordinary distance transform if we use the
following computational sleight of hand. We can initialise the pixels on the evolute
with their corresponding radius of curvature. This would mean that the evolute
would act as a kind of "wave guide" for the distance transform as it propagated
from the source pixels.
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5 Conclusion

We have introduced an extended distance transform and demonstrated that it can
be used to generate more general skeletal shape descriptors than can be produced
using the ordinary distance transform. The current algorithm is promising and
although inefficient in terms of speed and memory usage we hope to implement
several major improvements shortly. In closing we hope this paper has demon-
strated that singularity theory provides a powerful tool in the study of distance
transforms and their use in computer vision.
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