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Abstract
Point Distribution Models (PDMs) are statistically derived flexible templates which
are trained on sets of examples of the object(s) to be modelled. They require that
each example is represented by a set of points (landmaiks) and that each landmark
represents the same location on each of the examples. Generating the landmarks
from 2D boundaries or 3D surfaces has previously been a manual process. Here, we
describe a method for automatically generating PDMs from a training set of pixel-
lated boundaries in 2D. The algorithm is a two-stage process in which a pair-wise
corresponder is first used to establish an approximate set of landmarks on each of
the example boundaries; in the second phase the landmarks are refined using an
iterative non-linear optimisation scheme to generate a more compact PDM. We
present results for two objects - the right hand and a chamber of the heart. The mo-
dels generated using the automatically placed landmarks are shown to be better
than those derived from landmarks located manually.

1 Introduction
Point Distribution Models (PDMs) are statistically derived flexible templates, in-
troduced by Cootes et al [2], for modelling the appearance of objects with vari-
able shape. They have proved to be useful in a wide variety of 2D image interpre-
tation problems including surveillance [1], face recognition[7], monitoring farm
animals [8], hand-written character recognition [7], and medical image analysis
- locating, for example, heart chambers, vertebrae, and structures in the brain
[3]. Recently, the PDM approach has been extended to 3D [5] and the relation-
ship with other flexible template systems in 2D and 3D explored [4,9].

A PDM is generated by performing a statistical analysis on a training set of the
object(s) to be modelled. In each example the structures of interest are repre-
sented by a set of labelled points. These landmark points must be placed at equiv-
alent locations on each of the training examples. For instance, if we were to model
faces, point 32 might always represent the centre of the right pupil. If the land-
marks are not placed consistently, the resulting PDM must account for a noise
component in their positions as well as true shape variability; it is consequently
neither as compact nor as specific as it could be. Placing the landmark points
is often one of the most time-consuming aspects of building a PDM and intro-
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duces an undesirable element of subjectivity. It is particularly difficult to place
the landmarks appropriately when building a 3D model from volume images, such
as magnetic resonance images of the brain [5].

The aim of the work described in this paper is to automate the process of land-
mark placement. Training is normally a two-stage process: first, the example
images are interactively segmented to identify the important 2D boundaries or
3D surfaces; secondly, the landmark points are placed on these boundaries/sur-
faces - some at uniquely identifiable locations, others equally spaced around the
boundary/surface to define its locus. The first step is essential as it allows the
user to define the interpretation required. The second step is required for purely
technical reasons; it can be difficult and time-consuming and relies on the skill
and understanding of the user to obtain satisfactory results.

Our objective is to automate this second step, reducing the effort involved in train-
ing a PDM and optimising the placement of landmarks so as to give a compact
and specific model. The work we present here is our first attempt and is restricted
to considering closed boundaries of 2D objects.

2 Overview of Method
In order to generate the optimal PDM for a given class of objects, from a set
of example boundaries, we must select the pixel location of each landmark on
the boundary of each example so as as to make the PDM as compact as possible.
However, there may be a large number of landmarks on each example, a large
number of examples in the training set and a large number of pixels on the bound-
ary of each example. The combinatorics seem to preclude a direct search for
the best set of landmark locations.

In order to overcome this problem the method we have developed is a two-stage
process. In the first stage an approximate set of landmarks is generated for each
member of the training set. This is accomplished by establishing correspondences
between pairs of examples in the training set using a dynamic programming algo-
rithm which matches the curvature of the boundaries. By merging the matched
pairs and applying the matching algorithm iteratively a mean shape is generated
to which each member of the training set can be corresponded. Any set of land-
marks positioned on the mean shape can then be projected onto each of the
examples. In the second stage we refine the locations of the landmarks generated
in the first stage. A non-linear optimiser adjusts the positions of the landmarks
in an iterative scheme so as to produce a more compact model.

3 Approximate Landmark Generation
Let us assume that the object we wish to model can be represented as a closed
boundary within an image. The training set consists of a set of images containing
one or more examples of the object to be modelled. The objects can have various
orientations, positions, scales and shapes within the images. In order to produce
a set of landmarks on the boundary of each example, to train a PDM, we must
first be able to identify corresponding points on different examples of the object.

Let us assume that a method of establishing correspondence exists which can
take a pair of object boundaries and generate a pixel-to-pixel mapping. Further
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assume that a metric exists which describes how well the two shapes correspond.
We can use the pair-wise corresponder to generate the mean shape for the set
of examples using the following algorithm :

1) Construct a matrix of correspondence values, one for each pair of shapes,

2) Find the member of the training set which is most difficult to match. This
is achieved by finding the best partner for each example (i.e. the best
<&(/,/) for a given / or ;') and identifying the worst <E» value associated with
these best-partner pairs.

3) Remove the example which is most difficult to match, together with its
best-match partner, from the training set and apply steps (1-3) repeatedly
until all members are matched.

4) For each matched pair, construct a mean shape. The mean shape is con-
structed by averaging the position of each of the corresponding points on
the two boundaries as indicated by the pair-wise corresponder.

5) Regard the mean shapes generated in step (4) as a new training set and
apply steps (1-5) repeatedly until only one mean shape remains.

This algorithm can be represented as a binary tree as shown in figure 1. The
leaves of the tree are the individual members of the training set and the mean
shape is the root. A set of landmarks can now be generated automatically on
the mean shape. Any sensible algorithm can be used for this purpose e.g. a set
of landmarks positioned according to equal path-length along the boundary.

A Mean

Mean
Shape

Shape

Land-
marks

Pair-wise Corresponder.
Training Set

Figure 1 : Generating the Mean Shape and Approximate Landmarks.

Once the landmarks have been placed on the mean shape they can be projected
back along the branches of the tree towards the leaves. This can be accomplished
using the pair-wise corresponder. Each parent node in the binary tree has two
children. The pair-wise corresponder can be used to match the parent to each
of its two children. Using the pixel-matches generated by the corresponder, the
landmarks of the parent can be mapped onto the children. This procedure is
applied form the root to the leaves to generate the landmarks for each member
of the training set.

Clearly, this algorithm requires a reliable method of pair-wise correspondence.
We have employed a method which uses the curvature of the boundary of the
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objects as a basis for a dynamic programming matching algorithm[6]. The dy-
namic programming algorithm attempts to match points of high curvature on the
two boundaries so as to minimise the discrepancy in the curvature over the entire
length of the boundary. We are also investigating the method of Shapiro & Brady
[12,13] and the method of Sclaroff & Pentland [ 10,11]. In the Shapiro & Brady

scheme a modal analysis of the chord-lengths /•„ = J(xi-xjf + (yi-yj)2

(1 < i,j < n) is performed for each of two shapes and the resulting modes are
used to find the correspondences between the two sets of points. In the Sclaroff
& Pentland method a finite element model (FEM) is constructed from the bound-
aries of each shape. A modal analysis of the FEM generates vibrational modes
of variation which are used to match the two shapes.

4 Generating an Initial PDM
Given a set of approximate landmarks {x, = (pciti,yiti, ..,Xt^,yi^)T, (1 < i < N)} we

can construct a PDM as follows (see [2] for details) :

1
• Calculate the mean shape xm = — ^T x,.

i=i

• Calculate the deviations from the mean 5x, = x< - xm (1 < i < N).

1 N

• Calculate the covariance matrix S = — > (5x; 6xf.
N z-1

• The modes of variation are given by p* (k = 1..2n), the unit eigenvectors

of S such that Sp* = Xkpk where Â  is the kth eigenvalue.

• Select the t (< 2n) major modes of variation which capture the required
variability. In the examples we present below we select the t modes which
model 90% of the variance in the training set.

This procedure results in a model with a set of parameters b = (bub2,..,bl)
T

which act as weights for the t major eigenvectors of the co-variance matrix. These
weights can be manipulated to create new instances from the class of objects mo-
delled :

x = xm + Pb where P = [p1? p2,.., p(] (1)

5 Refining the Landmark Positions
The set of landmarks generated by the algorithm described in section 3 will not,
in general, be the best set of landmarks from which to build a PDM. This is be-
cause the criterion used by the corresponder to match two shapes does not relate
directly to the compactness of the model. We are interested in generating the
most compact representation possible for the PDM. We can achieve this by at-
tempting to reduce the total absolute variance of the model whilst trying to explain
as much of the variance using as few modes of variation as possible.

In order to generate a more compact PDM we consider each member of the
training set in turn and attempt to find a new set of landmarks on its boundary
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which will lead to a more compact model. This is achieved by varying the pose
(orientation and scale - the origin is fixed at the centroid of the object) and shape
(b vector) of the landmarks associated with the given member of the training
set in order to minimise the following expression :

f(0,s,b) = D2 + a(E2-El) (2)
where :

= > v , a
2.

£2 = +

x = {xi,yi,x2y2,..,xn,yn)
T = M(xm + Pb)

El = E2 measured at x = x0

M is the diagonal pose transformation matrix given by :

(3)

M =
Q 0
0 Q [ sec

ssi
cos(0) -

ssin(0) scos(d)\
(4)

The term x' = {x^y/, ...) in equation (3) represents the set of points on the
boundary of the example which are closest to the set of points x generated from
the current set of (6, s, b) values (see below). The term Xo is the set of landmarks
in the training set representing the current example object. We now consider each
of the terms in equation (2) in more detail.

The term D2 in (2) is the squared Mahalanobis distance which indicates the
distance of the vector b from the origin in the parameter space of the model.
The origin of the parameter space (b = 0) is the mean set of landmark positions.
The Mahalanobis distance can be reduced in two ways :

• by decreasing the magnitude of the shape parameters, bt , associated with
the member of the training set they represent i.e. finding a new vector, b,^ ,
which represents a set of landmarks more similar to the mean set of land-
marks but which can still be represented by the boundary of the member
of the training set under consideration; by attempting to re-position the
landmarks around the boundary so as to be closer to the mean set of land-
marks, the total variance, XT, is reduced;

• by reducing the bf values associated with the higher values of j , the value

of D2 is reduced; the variances, kj, (the eigenvalues associated with the

covariance matrix - see section 4) decrease rapidly with increasing j ; the
model becomes more compact in the sense that the first few modes of vari-
ation explain a greater proportion of the total variance.

Clearly, attempting to minimise the Mahalanobis distance alone would be unsuc-
cessful; the set of landmarks for each example would collapse onto the mean
set of landmarks (b = 0). We prevent this happening by introducing a represen-
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tation error (E2) associated with each shape. The representation error measures
the discrepancy between a desired set of landmarks (generated from a particular
set of (6,s, b) values) and the ability to represent the suggested landmarks on

a given boundary. The representation error is measured by locating the point
on the boundary closest to each of the landmarks and summing the inter-point
distances (see figure 2).

• Suggested position of landmark.
O Closest point on boundary to

suggested landmark.
Boundary of current

example shape

Representation error E2 = ^ dj
Error, d,-, for the

ith landmark
i-l

Figure 2: Calculating the Representation Error for a given
set of Landmarks and a given Boundary.

The set of landmarks representing each member of the training set has an implicit
representation error due to model truncation. In equation (2) this is the term
E\ . For a given set of (0, s, b) values and a given boundary the representation

error is E2 (see figure 2). The term (E2-El) in equation (2) represents the
increase in the representation error associated with a change in the pose and
shape of the set of landmarks for a particular member of the training set. This
is a squared distance term which is normalised using the value 2/A, in order to
compare it with the dimensionless Mahalanobis distance. What equation (2) says,
therefore, is that we will only accept a decrease in the Mahalanobis distance if
the improvement is not outweighed by an increase in the representation error.
In order to minimise equation (2) we have employed the Simplex method of non-
linear optimisation (NAG'*' E04CCF).

The refinement stage can be summarised as follows :
i) Generate the PDM from the current training set;
ii) for each member of the training set re-position the landmarks by minimisa-

tion of equation (2); place the new set of landmarks for each member of
the training set into a new training set;

iii) if no improvement has been found, stop; otherwise, replace the training
set with the new training set and return to step (i).

6 Results
We have used the method above to generate PDMs for two classes of object :
hands and heart chambers (left ventricles). In each case the objects of interest
were segmented from a set of images containing examples (18 for the hand and
tNAG is a registered trademark.
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66 for the heart). The segmented pixel boundaries of the objects formed the
training set. For both the hand and the heart we generated three models :

• a model generated by manually placing a single landmark on the boundary
of each example; extra landmarks were equally-spaced around the bound-
ary.

• a model generated by manually placing a small set of landmarks on the
boundary of each example; extra landmarks were generated at equally-
spaced intervals along the boundary between the landmarks selected by
hand; this is the technique we have used previously to generate PDMs; for
example, on the hand 11 landmarks were placed, one at the tip of each
finger and the thumb, two at the wrist and one at each of the junctions be-
tween the fingers.

• a model generated automatically as described above.

These models are shown in figures 3 and 4. From these results it is clear that
the simple approach of placing a single point on the boundary at a single key
landmark position and generating further landmarks by equally spacing points

(a) Some members of the
training set.

(b) The first 3 modes of variation
for the automatic model.

b2

b3

(c) The first 3 modes of variation for
the one-point model.

(d) The first 3 modes of variation for
the hand-generated model.

Figure 3: Training Set and PDMs for the Hand.
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Some members of the
training set.

(b) The first 3 modes of variation for
the automatic model.

b3

b4

b3

b4

(c) The first 3 modes of variation for
the one-point model.

(d) The first 3 modes of variation for
the hand-generated model.

Figure 4: Training Set and PDMs for the Heart.

around the boundary fails to generate a PDM with the required specificity. This
is especially true of the hand model (see figure 3c). As the hand changes shape
the relative lengths of the sub-parts change e.g. if the fingers are curled slightly,
they appear shorter than when fully extended. This means that points change
their position on the boundary of the hand according to how extended the fingers
are rather than consistently representing the same features. Consequently, several
of the modes associated with this model are concerned with shuffling points
around the boundary in order to compensate for other modes which do not cap-
ture the variation correctly (the 2nd mode is a compensation for the 1st mode
in figure 3c).

It can also be seen from figures 3 and 4 that the models generated automatically
are qualitatively very similar to those generated by hand - see figures 3 b&d and
figures 4 b&d. (Note that the modes of variation are displayed left-to-right but
that they may appear reversed right-to-left for different models. This is because
the signs of the eigenvectors, p* , representing the modes of variation are arbit-
rary.)
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Recall that the automated method of landmark placement described in section
2 has two phases. In the first phase the landmarks are positioned approximately
and in the second phase the landmark positions are refined. The effect of the
refinement process is summarised in table 1. This table shows the cumulative per-
centage of the total variance, kT, explained by each mode, together with the
total variance. These values are shown for both the training set containing the
approximate landmarks and the training set of landmarks generated after 5 iter-
ations of refinement. The refinement algorithm not only reduces the total vari-
ance over the training set but also increases the compactness of the models in
the sense that the first few modes of variation describe a greater proportion of
the total variance. We have also included the values for the PDMs generated
manually. Comparing the refined automatic models with the manual models, we
see that the automatic models have less total variance and are also more compact.

Mode

1

2

3

4

5

6

\ r

Cumulative % Variance Explained

Hand Model

Approx

38.4

61.5

75.2

83.0

88.3

91.5

0.95

Refined

47.6

74.0

88.1

94.6

96.1

97.3

0.67

Manual

40.5

66.3

80.2

87.5

92.0

94.2

0.89

Heart Model

Approx

33.1

58.7

73.5

81.4

87.0

89.6

0.70

Refined

48.4

68.7

82.3

88.9

92.8

94.2

0.39

Manual

41.2

62.5

72.8

81.8

86.9

90.2

0.40

Table 1: Refinement of Hand and Heart Models.

7 Conclusions
We have described an algorithm which can be used to generate PDMs automati-
cally from a training set of example shapes, where each shape is represented by
a simple closed boundary in 2D. We have demonstrated the successful application
of the method by both a qualitative and quantitative comparison of two PDMs
generated by the automatic method with PDMs generated manually. Having
shown that it is possible to generate models automatically for closed boundaries
in 2D we intend to extend the method in two ways. First, the method must be
able to cope with objects consisting of more than a single part. Second, the
method must be extensible to surfaces in 3D.

In the first phase of the two-stage algorithm described in section 2 we employed
a pair-wise correspondence algorithm to match the boundaries of two example
objects. In order for this matching process to be successful when considering sur-
faces in 3D it would be highly advantageous if no connectivity of the 3D points
were required by the correspondence algorithm. It is unlikely that the dynamic
programming algorithm we have employed here for the 2D case can be extended
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to 3D as the connectivity of the 2D boundary is exploited by the algorithm. How-
ever, both the Shapiro & Brady [12,13] and Sclaroff & Pentland [10,11] methods
extend straightforwardly to 3D as no connectivity information is required. The
reliability of these correspondence algorithms has yet to be investigated and the
computational requirements of the algorithms may prove to be considerable.
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