
3-D Shape Recovery Using A
Deformable Model

Xinquan Shen and David Hogg
School of Computer Studies

The University of Leeds
Leeds, LS2 9JT, UK

{ sheii, dch}@uk. ac. leeds . scs

Abstract

The paper describes a method for recovering the 3-D shape of a moving
object from a sequence of images. While following the motion of the
object, a 3-D surface model, initialised to be spherical, progressively
deforms itself under the action of simulated external forces applied
to the model to drive its profile towards the object profile extracted
from the image. An internal energy coupled to the model encourages a
smooth and uniform deformation. The model is also constrained to be
symmetrical about an plane parallel to the direction of motion. Poses
for the model to correctly align with the object in 3-D are computed
by using the motion trajectory of the object in the image plane and
a non-linear least squares method. Experimental results are presented
for recovery of shape models of vehicles. The resulting model represents
the 3-D object shape, and may be used for several purposes including
object recognition, tracking and visualisation.

1 Introduction

In previous work [1], we proposed a deformable model-based method for recover-
ing object shape from a sequence of images, assuming the object is rigid, mirror
symmetric, and moves on a ground plane. The method uses a physically based
model similar to that proposed by Terzopoulos, et al [2, 3] coupled with special
internal constraints. Shape recovery is achieved through deformation of the model
in response to image profiles, by its alignment with the object in 3-D using motion
trajectory information. This paper extends the previous work in two ways: (1) an
internal energy is incorporated to encourage smooth and uniform deformation of
the model, constraining parts of the model surface which are not directly influ-
enced by external forces, (2) a more robust method is used for posing the model
to align with the object in 3-D.

The method uses a 3-D physically based surface model whose behaviour is de-
termined by its internal energy and the external forces acting on it. By initially
taking the object shape as a sphere, the model follows the motion of the object
and actively deforms itself in response to the action of simulated external forces
computed from each image in the sequence, to approach the object shape. For
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each image, the model deforms away from its current state which is the best ap-
proximation to the object shape up to the previous image. The simulated external
forces are applied to the model in such a way that they drive the model profile
towards the object profile extracted from the image. The coupled internal spline
energy encourages a smooth and uniform deformation. External forces are im-
posed symmetrically on the model to maintain mirror symmetry about a plane
parallel to the direction of motion of the object. Alignment of the model with the
object in 3-D is achieved by estimating the pose of the object for each image using
back-projection of its image trajectory and a non-linear least squares method.

2 Related Work

The 3-D locations of points may be infered from sequential locations of feature
points (e.g. corners) in a 2-D sequence of images. The object surface is then
approximated by either triangulation of these points [4, 5] or using a patchwork
of parametric surface functions. Here the detection of the feature points and the
establishment of their correspondence which are sensitive to noise perturbation
are essential. Producing a detailed and smooth representation of surface shape is
nontrivial. The extension to deal with closed surfaces is also not straightforward.

Methods for producing 3-D object shape using 2-D object profiles extracted
from multiple images have been proposed, for example, by Chien and Aggarwal
[6], and recently by Stenstrom and Connolly [7]. The methods are based on the
intersections of 3-D bounding volumes produced by sweeping 2-D object profiles
(regions) along the line of sight. These are applied in a controlled environment so
that images are obtained from predetermined known views.

Recently, physically based models have been proposed for modelling rigid and
non-rigid objects [8, 9, 10]. By combining the dynamics, the model can accom-
modate both object shape and its motion. Shape recovery from a given range
data image is achieved by applying suitable external forces to the model [3, 11].
Our method uses a similar physically based model, incorporating suitable internal
forces. Shape recovery is achieved by aligning the model with the object in 3-D
and imposing external forces derived from the object profiles.

3 Deformable Model

3.1 Coordinate systems

A world coordinate system X is chosen so that the ground plane on which objects
are moving is given by Z = 0 (Fig. la). Scene points are expressed in homo-
geneous form so that (XX, XY, XZ, A), A ^ 0 represents the point (X,Y,Z). The
transformation from world coordinates to pixel coordinates x of the image, again
expressed in homogeneous form, is characterised by a 3 x 4 calibration matrix C

x = CX (1)

C is computed by examining the distribution of projected object height in the
images [12]. Finally, the model is expressed in a model centered coordinates system
X'.
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(a) (b)

Figure 1: (a) Definitions of coordinate systems; (b) Deformable model

3.2 Deformable model

The physically based model, r(u, v), is a closed surface (topologically to an equiv-
alent sphere), where, (u, v) £ [0,1]2 are the material coordinates. It has boundary
conditions which constrain the model to be "seamed" at the curves v = 0 and
v — 1, and with two poles [1]. For each image, the model deforms away from its
current state, which is the best approximation to the object shape up to the pre-
vious image, to balance the action of the external forces. The deformation of the
model is characterised by a displacement d(u, v) away from its previous position
(Fig. lb).

Suppose the model is not subject to any shift during the deformation. Un-
der the static situation, its deformation behaviour is governed by the following
equation [1]:

S£ = f (2)

where, / is the external force acting on the model; £ is the deformation energy
associated with the model. The variational derivative 6£ is thus the elastic force
so produced.

For our purpose, the elastic force S£ is taken as following

where, £\{d) is a deformation energy produced due to the displacement. £2(1") is
an internal energy from the current state of the model to maintain the intrinsic
property of the model (e.g. coherence and smoothness of the surface). Variational
derivatives 6^£i(d) and 6r£2(r) are thus the elastic forces so produced.

The deformation energy £\{d) used here is the membrane deformation energy
suggested by Terzopoulos [3].

+ w0d
2 dudv (4)

Constants wo and w\ control the local magnitude and variation of the deformation
respectively. This deformation energy ensures that individual deformations at each
step are smooth but may accumulate over several frames to allow creases to emerge.
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To prevent the unwanted creases, especially on the local surfaces never projectly
close to profile, a spline energy is taken as the internal energy £2(7") to encourage
a smooth and uniform model surface,

^ + ^L\ dudv, (5)

where, constant c is a weighting parameter.
The variational derivatives of these energy are then [13]:

6dSi(d) = wQd(u,v)

6rS2(r) = c
(6)

For each image, the external forces are computed and applied to the points
on the model which project onto the model profile, and therefore drive the model
profile towards the object profile. Other points on the model are adjusted by virtue
of the internal energy and the propagation of the external forces. The external
force on a point X on the model is computed based on the Euclidean distance
from its image a; to object profile (see [14] for details about the computation
of the external force and the extraction of the object profile). In the numerical
implementation of this method, the external forces are computed at each iteration
step. To maintain the mirror symmetry constraint, external forces are always
applied to symmetry points also.

3.3 Numeric Implementation

The system (2) is discretised for numeric simulation. By discretising the domain
0 < u,v < 1 into a regular M x N mesh of nodes and using finite differences to
approximate the derivatives, we have the following discrete approximation of the
governing equation:

K0D + K1R=F (7)

where, Ko and K\ are stiffness matrices
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KiX — Kiy — Kiz,i = 0,1 are MN x MN matrices. H, D and F are the vectors
of model nodes, displacements at model nodes and external forces acting on the
model nodes respectively,

n

Each element in these vectors is an M x N vector. Ko and K\ are symmetrical,
sparse and non-singular, and are only computed once. The iteration equation for
updating the model is:

Rn+1 ^(I-Ko1K1)R
n + Ko1Fn (8)
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Our method for shape recovery requires the correct alignment of the model with
the object in 3-D before performing the deformation operations at each image.
This can be achieved by finding poses for the model which are consistent (up to
a relative depth) with the object poses in 3-D. Since the rigid object is moving
on the ground plane, these poses are expressed in terms of orientation 9 about
the Z'-axis and positions (Px,Py, PZ)(PZ is fixed) of the model coordinate system
within the world coordinate system, and are represented by a rigid transformation.

Since the model is progressively deformed to be consistent with the object
profile, it seems sensible to find the pose parameters which transform the model
to a state which has a minimum distance measurement between its profile and
object profile. However, experiments found this can only find the approx position
parameters, since there is little orientation information directly available from the
individual object profile. Instead, we compute the orientation according to the
object trajectory in the image plane, and then estimate the position parameters
by finding a minimum distance measurement between the implied model profile
for that orientation and object profile.

4.1 Orientation estimation

The orientation of the model is assumed to align with the direction of motion
of the object, and can be approximately computed from its motion trajectory in
the image plane approximated by the centroids of regions obtained by picture
differencing [15]. Let a;, and x,+i be the centroids of object regions in images i
and i +1 respectively, and assume they are the images of two points with the same
height to the ground, h, i.e.

(9)

Xi, Xi+i, Yi and Yi+i can be solved from the above equation. The orientation
of the model for image i + 1 is then determined by

6 = arctan2(Xi+1 - Xi,Yi+1 - Yi) (10)

This can be a good estimation when the distance between the points (Xi, Yi, h)
and (Xi+i,Yi+i,h) is not too small. More robustly, we estimate the orientation
by computing the tangent at the point (Xi+i, Yi+i, h), which can be estimated by
interpolating the points (Xi,Yi,h), (Xi+i,Yi+i,h) and (X,-+2,Vi+2, h) with a 2nd
order parametric curve.

4.2 Position estimation

In our previous work, the position of the model is determined by taking the centroid
of the object region in the image as the projection of the model center. However,
this simple method cannot effectively cope with situations where the extracted
object regions are not compact. Here, we use a more robust method to estimate
the position parameters.
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Figure 2: Determination of direction /. (a) om is inside object region; (b) om is
outside object region.

In the deformation operations, the model is deformed until its profile is consis-
tent with the object profile up to certain criterion. This, at least, makes the part
of model surface be the approximation of the object surface. Since the difference
of visible surfaces of the object between two frames is relatively small, we estimate
position parameters by using model itself.

Let Ni,i = 1, 2 , . . . , AT be the profile of the model obtained to date; X,j(Px, Py),
j — 1,2,. . . , L be the L nodes on the model which originally all project to the same
image point N,. Define a merit function ^(Px, Py)

N

(11)

where, fc depends on (Px,Py) and fc = min{6(Xij(Px, Py))}. S(Xij(Px,Py)) is

the distance from the x^, the image of Xij(Px,Py), to the boundary of object
region in the current image along a direction I. Direction I is determined according
to whether the x,j and the image of model center, om, are inside the object region
(see Fig. 2). If the om is inside the object region, the I is along the vector from
om to Xjj, or from XJJ to om depending whether Xij is inside the object region;
If the om is outside the object region, I is along the vector from o m to x,j when
XJJ is inside the object region, or along the vector from Xjj to the center of object
region, o, when x,j is outside the object region.

Write <j>1 as

i^ixi-xtf + iyt-ri)2 (12)
(x(, yi) is an image point of one of t heXj j , (a^, J4) is a found point on the boundary
of object region. The merit function (11) then can be rewritten as

(13)

where,
i = 2 m - l , m = l , 2 , . . . , A r

i — 2m, m = 1, 2 , . . . , N
(14)

Now our aim is to find parameters (Px, Py) (with fixed Pz and 8) which minimise
the merit function (13).
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Transformation from 3D to 2D is a non-linear operation, but, it is a smooth
and well-behaved transformation to allow the use of Newton least squares method
to estimate unknown parameters Px and Py [16, 17]. In the implementation,
the Levenberg-Marquardt method is used [18]. Experiments found the estimation
normally converges to the correct solution if the method begins with an initial
guess which is not far away from the true value (in our experiment, the initial
guess is the position for the previous image).

4.3 Determination of start pose

To begin shape recovery, a start pose for the initial model which is a sphere needs to
be suitably determined. With the first two images in the sequence, we determine a
pose of the model at the second image, and begin the operations of shape recovery
with this image.

The position parameters can be determined by setting the model to a position
where the projection of the model center, XQ, overlaps with the centroid of the
object region in the image, XQ, i.e.

x0 = CX0 (15)

By presetting the height of the model center to the ground, h, the 3-D position of
the model center can be determined. Since the pose for the model is determined
up to a relative depth to conform with object pose in 3-D, the selection of the
height h could be arbitrary. The orientation for the model at the second image
can be determined with the method in section 4.1.

The object to be modelled is assumed to be symmetrical about a plane which
is vertical to the ground plane and parallel to the direction of motion. For the
convenience of imposing the external forces symmetrically, the initial model is then
posed so that it has the start pose, and all the points with material coordinate
v = 0 are on the symmetry plane.

5 Experimental Results

The above method is applied to 3 sequences of images depicting 3 different cars
turning into a parking space. The model is discretised into a 17 x 32 mesh of
nodes, and the height of its center to the discussed ground plane is set to zero. All
the resluts are obtained using the same set of parameter values.

Figure 3a shows 4 images from a sequence of 24 images (256 x 192 pixels) of
a Volkswagen, and figure 3b shows the initial model and the intermediate state
of the model after processing of the same images. The last model is the final
shape model for the object. Figure 4 shows 4 images from a sequence of 25 images
(180 x 143 pixels) of a Fiat Uno, and the corresponding intermediate models. The
model at frame 25 is the final model. Figure 5 show images of another car and its
shape model.
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Figure 3: (a) Four object (Volkswagen) images from a sequence of 24 images, (b)
Initial model and intermediate models corresponding to the images in (a); the
model at frame 24 is the final model

6 Conclusion

We have proposed a method for generating 3-D object shape models from 2-D
images using a deformable model. While following the motion of the object, the
model progressively deforms itself under the action of external forces derived from
the image, and approaches the object shape. An internal energy is incorporated in
the model to encourage smooth and uniform deformation and to constrain these
parts of surface not directly influenced by the external forces. Alignment of the
model with the object in each image is achieved using the motion trajectory of the
object in the image plane and a non-linear least squares method. The result is a
3-D model suitable for use in a variety of applications, such as object recognition,
tracking and virtual reality.
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