
Recognition of 2-D Objects
by Optimal Matching

Liu Lu, Fang Luo, N. J. Mulder

PB 162, P O Box 6, 7500AA, Enschede, The Netherlands

Abstract: This paper introduces an approach of recognizing 2-D objects by optimal matching. The
method consists of two stages: object identification and object localization. Both of them are
accomplished through optimal feature matching, in which the radiometric distribution of an object
as a global feature extracted from an image is matched directly to the object model. A cost
function is defined as a quantitative evaluation of the feature fitting and the recognition process
is based on cost minimization. In this method, every subproblem in object recognition is
formulated as an optimization problem and techniques of optimization are utilized to solve these
problems.
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1. Introduction
Object recognition is an important topic in computer vision. Today, at the

time that techniques of 3-D object recognition have been widely developed, the
recognition of 2-D objects is still of interest, because, on the one hand, 2-D
object recognition has its own applications, such as the recognition of
agriculture fields or rivers in remote sensing images; on the other hand, the 2-D
object recognition could be the fundamental for some 3-D processing, for
instance, in the matching of stereo images. In this paper, we concentrate on the
recognition of agricultural fields in radar images. An object here means a land
parcel of agricultural fields of a single crop type.

Object recognition concerns the recognition and localization of objects of
interest in a scene from an image of the scene. According to their manners of
dealing with these two issues, the approaches of object recognition can be
categorized as: (1) recognition-followed-by-localization, or (2) recognition-via-
Iocalization[5]. Usually, in the recognition-followed-by-localization approaches,
higher-order relational descriptions or global features of input are used to match
to similar descriptions of objects. Therefore, this kind of approaches calls for
extensive segmentation and their capabilities are limited by segmentation. On
the contrary, the recognition-via-localization approach involves minimal effort
in segmentation, since the primitive features extracted from the image are used
to match directly to the object models.

In this paper, we present a method of recognizing 2-D objects. The method
consists of two stages: object identification and object localization. In both
stages, features extracted from an image are matched directly to the object
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models that removes the restriction of segmentation. The radiometric
distribution of an object as a global feature is used not only to identify the
object but also to localize it. A cost function is defined as a quantitative
evaluation of the feature fitting. In this way, the procedure of feature matching
is transferred into a global minimum cost search. Problems in the optimization
are (1) the existence of local minima in the cost, (2) the heavy computation
burden. To solve these problems, specific techniques are developed in the
proposed method. Local minima are avoided by using simulated annealing in
the first stage, object identification, and its result serves as the initial state for
the second stage, object localization. Multi-resolutions are applied to reduce the
computation. As sizes of land parcels are not always known, the parameter
estimation is also accomplished at the second stage. The final result includes
identified objects and their parameters: location, rotation and scale as well as
a confidence factor of the result.

The approach is object-based. All the processes, including the feature
extraction and cost calculation, are executed at the object level.

Our approach is distinguished by the following respects:
1) The approach is composed of two stages. In both stages, the features

extracted from an image are matched directly to the object models so that the
capability of the approach is not limited by segmentation.

2) In addition to objects identified, the first stage offers a good initial state for
the second stage to prevent the optimiser from failing into local minima.

3) Radiometric distributions are used as global features of objects in both
object identification and object localization. The gamma distribution acquired
with radar simulation is adopted as radiometric model to characterize the
spectral properties of an object in a radar image.

4) Multi-resolutions are applied to speed up the optimization in the first stage.
5) Besides the recognition result, a confidence factor is offered which is

related to the number of misclassified pixel.
Although the method is a problem-specific solution for agricultural field

recognition, it is applicable for some other problems with trivial modifications.
This paper is organized into seven parts. Section 2 introduces our

methodology and section 3 discusses the object model. The procedures of
object identification and object localization are addressed in section 4 and 5
respectively. Section 6 presents experimental results, and Section 7 contains the
summary.

2. The procedure of object recognition.
Consider the problem of 2-D object recognition that we are facing. Given a

radar image of a scene, then the task of object recognition is to determine
whether any of the objects of interest are present in the scene, and if they are,
to determine their locations and scales.

Fig. 1 shows our two stage procedure. In this procedure, object recognition is
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Fig. 1 The Two .stage procedure for 2_D object recognition

R. Radiometnc distributions of objects
G: Geometric shape of objects
O & P: Objects and their Parameters

prediction

image lnudel

divided into object identification and
object localization. Both of them are
accomplished through optimal feature
matching. The optimal feature matching
starts with a geometric prediction of an
object. The radiometric feature of the
object extracted from the predicted
region in the image is compared with
the object model. A cost function is
calculated as a quantitative evaluation
of the geometric prediction of the
object in terms of its feature fitting.
The single global minimum of the cost
corresponds to the prediction with the
best feature match. The feature matching is accomplished through optimization,
the global minimum cost search. Fig.2 illustrates the procedure of optimal
feature matching.

In optimization, the existence of local
minima in the cost function is a big
problem, because they make the
optimiser fail into a false minimum and
lead to a wrong result. There are three
ways to solve this problem:

1) define a "smooth" cost function
without or with less local minima.

2) choose a powerful optimization
algorithm that guarantees to find the
global minimum.

3) let optimization procedure start
with a good initial state.

The effort through the first way can be seen in the cost definition later. The
function is smoothed by the integral. Because of their different tasks, the
problem of local minima is dealt with through different ways in object
identification and object localization. In object identification, the problem is
solved by using simulated annealing, which guarantees to find the global
minimum cost, while in object localization, local minima are avoided by starting
with a good initial state. Besides, in object identification, the geometric
prediction of an object is in the form of pixel set to suit simulated annealing.
In object localization, parametric form of geometric prediction is adopted to get
the localization and scales of objects.

Another advantage of using simulated annealing in the first stage is that it is
insensitive to its initial state, which means the first stage can start with an
arbitrary geometric prediction of the object.

Fig 2 The optimal feature matching

RF: F\idiouietric Feature

RS: Result
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3. The object model
An object model is a set of descriptions of objects or classes of objects that

are expected to be required during the recognition procedure. These descriptions
should be suitable for feature matching as well as sufficient to characterize the
properties of objects to be recognized. Therefore, the structure of the model is
dependent on the application domain.

The features of an object extracted from a radar image can be categorized as
radiometric or geometric features. The radiometric features of an object
corresponds to the land cover class, i.e. the crop type in a land parcel. The
geometric features of an object contain the information about its shape, location
and scales. Hence, the object model is composed of a radiometric part and a
geometric part.

The radiometric model of an object described by the crop type and parameters
of the distribution characterizes the spectral properties of an object in a radar
image. It is acquired with the techniques of radar simulation and expressed as
a gamma distribution:

p(l\ACT)= - (-I—)N-iexp (._!_) j>0 ( 3 . 1 )
CT (o°/N) (N-l) ! a°/N a°/N

in which I is the intensity of an image pixel, ACT is a region of the single crop
type CT, N is the number of independent samples, a0 is referred to as the
backscattering coefficient [2][4],

The geometric model is formed by geometric shape and parameters. As the
land in Holland is rather flat and most fields have regular shapes, rectangle is
employed and its parameters consist of one orientation, two translation and two
scale parameters. These five parameters fix the localization and scale of a
rectangle completely.

It should be noticed that the radiometric model, used to characterize the
spectral properties of an object, is a statistical model. It implies this feature
must be extracted from a region of enough size. As a matter of fact, in both
stages of object identification and object localization, the radiometric feature of
an object from the given image is extracted from the whole region of geometric
prediction of the object.

4. Object identification
The task of object identification is to determine what objects are present in an

image, in the other word, is to identify the crop type of each object.
The first stage starts with an arbitrary geometric prediction of an object. A

geometric prediction of an object is an estimates about the geometric appearance
of the object in an image. The radiometric feature is extracted from the
predicted region in the image and compared with the object models. A cost
function is calculated as a quantitative evaluation of the geometric prediction
of the object in terms of its feature fitting. The single global minimum cost
corresponds to the prediction with the best feature match. The feature matching



371

is accomplished through optimization, the global minimum cost search. After
the global minimum cost is found, if it is under a threshold, the object is
identified. In order to solve the problem of local minima, in this stage,
simulated annealing is used to guarantee the global minimum of cost is found.
Another advantage of using simulated annealing is that it is insensitive to its
initial state, which allows the procedure start with an arbitrary geometric
prediction of the object. The weakness of simulated annealing is its long
computation time. A multi-resolution technique is performed to speed up the
convergence.

Suppose there are L objects in an image. Every object in the image is
identified individually. While an object is identified, all the others in the image
are regarded as the background of it. In this stage, a geometric prediction of
a object is a set of pixel supposed to belong to the object. If we denote a
geometric prediction of the Ith object O, as POI, e(x,y) is an element of an image
with the coordinate (x,y), in original resolution it means a pixel, then a
geometric prediction of the Ith object can be expressed as: P0|={e(x,y)e0|}. A
cost function is defined to evaluate the geometric prediction in terms of its
feature fitting.

4.1 A cost function for object identification
Since the cost serves as a quantitative evaluation of a geometric prediction in

terms of its feature fitting and will guide the feature matching, in order to avoid
an endless search or an unrepeatable outcome of the matching, the cost function
must meet the following requirements:

• The cost function assign a lower cost for a prediction with better feature
fitting.

• The cost function has a global minimum and its global minimum
corresponds to the prediction with the best feature fitting.

Keeping these requirements in mind, we, now, define a cost function for
object identification. If CT, is the supposed crop type for the Ith object, the
cost function of a geometric prediction of the Ith object is defined as:

C[PJA 2+/7|/>(/|Po/)-p(/|OC77)\dI-^\P{I\PB)-p(l\Ocn)\dl (4.1.1)

where C[POI] is the cost of a geometric prediction of the Ith object P0), p(I | P01)
is the radiometric distribution obtained from a geometric prediction of the Ith
object, p(I | PB!) is the radiometric distribution obtained from the geometric
prediction of the background of the Ith object, CT, is the supposed crop type for
the Ith object, p(I | OCTI) is the radiometric distribution of supposed crop type for
the Ith object in the model.

It is easy to prove that C[P0]] meets the requirements above and its single
global minimum corresponds to the geometric prediction with the radiometric
features matching perfectly to that of the supposed crop type.

4.2 The optimization process for object identification
After a proper cost function is defined, an optimization is performed to find
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the prediction of the global minimum cost, which means the geometric
prediction with the best feature match. The goal of the optimiser is to find the
P0I' that satisfies: VPOI, C[P0,'] < C[P0,]. The problem in optimization is the
existence of local minima in the cost function that make the optimization fail
into a false minimum and lead to a wrong identification.

In optimization theory, there are numerous algorithms, such as gradient,
simplex and conjugate direction set etc, based on iterative improvement by
comparing the current point with its neighbourhoods. Unfortunately, these
algorithms do not guarantee to find the global minimum. Unlike these
algorithms, simulated annealing accepts a function increase with a probability
and does not stuck in a local minimum with any initial state [3],[6]. Therefore,
simulated annealing is adopted to search the prediction of the global minimum
cost.

However, simulate annealing is a very time-consuming algorithm. A technique
of multi-resolution is developed to reduce the convergence time. Assume the
full resolution of an image is 2mx2m, m>l. If we denote an image element in
this resolution as em(x,y), for an identified object O,, every element has two
states: em(x,y)e0, or not. A geometric prediction of O, is expressed as
Po,

in={em(x,y)eO,}. All the possible geometric predictions of an object is
denoted as Qm={P0|'

n}. Let us consider the image of a lower resolution of 2'""
'x2m-', its element em.,(x,y)={em(2x,2y), e,n(2x+1,2y), em(2x,2y+l),
em(2x+l,2y+l)} so that its whole set of prediction Qm.,cQm. Furthermore, we
getQociQ lc.c:Qm. |CQm. It shows that the reduction of image resolution yields
the shrink of the prediction set which means a smaller search space and a
shorter convergence time for optimization.

For each object to be identified, the optimization starts with a low resolution
2nx2n, l<n<m. Simulated annealing is executed to find the global minimum
prediction P0|n'. Then the resolution is increased to 2n+lx2n+l, another search of
simulated annealing starts with P0|"', which is quite close to Po,"

+1'). This
procedure is repeated until a predetermined image resolution 2Nx2N is reached.
Since the localization of an object is not determined by the result at this stage,
the predetermined image resolution need not to be the original image resolution,
i.e. n<N<m.

After the final minimum cost C[P0,
N'] is found, it is compared with a

threshold. If it is under the threshold, the object is identified, i.e. the Ith object
is of the supposed crop type CT,. Otherwise, it is aborted. In turn, all the
objects in an image are identified.

5. Object localization
After all the objects in the scene have been identified, objects in the scene and

their radiometric features are known. The task of the second stage, then, is to
estimate the geometric parameters of each object, including the parameters of
position, orientation and scale.



373

In fact, in object localization, there are two subtasksto be accomplished: 1)
From the labelled image supplied by the object identification, get the initial
parameters of each object for the object localization. 2) From the given image,
get the optimal parameters of objects. Each of them is expressed as an
optimization problem. Similar to the object identification, the localization is
accomplished through the optimal feature matching. However, it is different
from the first stage in the following aspects: 1) The initial parameters of each
object is extracted from the minimum cost prediction of the object obtained in
the first stage and they forms the initial prediction of the scene in the second
stage. 2) The geometric prediction of an object is in a parametric form, i.e. a
geometric prediction of the Ith object in this stage is represented as P0,=R(9, xt,
yt, xs, ys), among them 9 is the parameter of orientation, xt, yt are parameters
of translation and xs, ys are parameters of scale. 3) Two cost function are
defined individually for initial parameter extraction and the final parameter
estimation. 4) A direction set algorithm is applied as the optimization algorithm.

As a consequence of the linear relation between a conditional probability and
its geometric region, the value of the cost is related to the number of
misclassified pixel. On the other word, the global minimum cost corresponds
to the prediction with not only the best feature match but also the least
misclassified pixel.

5.1 A cost function for the initial parameter extraction
The initial parameter extraction for each object is executed from the labelled

image formed by the minimum cost prediction of the object. If we use O', to
express the minimum cost prediction of the Ith object obtained from object
identification, i.e. O',=POI

N', a parametric prediction of the Ith object is PO1=R(9,
xt, yt, xs, ys), the cost for the prediction is defined as:

(5.1.1)

where N(A) is the number of pixel belonging to the set A. In fact, the cost is
the sum of the number of pixel which belong to O', but is not in POI and that
does not belong to O', but be predicted as POI. In short, The cost is the total
number of misclassified pixel. The global minimum cost corresponds to the
parameters with the geometric prediction matching to the labelled image
completely.

5.2 A cost function for object localization
In object localization, a geometric prediction of the scene is formed by the

predictions of the objects in the scene and denoted as PS={POI,..., P0L}. A cost
function is defined as an evaluation of the prediction in terms of feature fitting:

(5-2.1)

among them, C[PS] is the cost of a geometric prediction of the scene, p(I | Po,)
is the radiometric distribution obtained from the geometric prediction of the Ith
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object P0!, L is the number of objects in the scene, p(I |OCT,) is the radiometric
distribution of the crop type of the Ith object in the model.

Using the linear relation between radiometric distributions and their geometric
regions, the formula (5.2.1) is easily to be rewritten as:

C[PJ=E £ N(Pof)Oj)x-)—f\p(I\OCTp-p(I\Ocn)\dI (5.2.2)

in which Oj is the set of pixel belonging to they//? object, N(POI) is the number
of pixel being predicted as the Ith object. N(P0|nOj) is the number of pixel
being predicted as the Ith object but, in fact, belonging to the jth object, i.e. the
number of misclassified pixel of POI.

It is readily to prove that the cost of a scene prediction also meets the
requirements stated in section 4.1. Moreover, its only global minimum,
theoretically zero, corresponds to the prediction without any misclassified pixel,
which supplies the best geometric parameters of objects.

5.3 The optimization process in object localization
As the geometric predictions in object localization, in both the initial

parameter extraction and the final parameters estimation, are parametric forms,
the cost of a prediction is a function of the parameters of the object(s).
Since the initial parameters are estimated in the labelled image and object

localization has good initial parameters, the optimization in this stage is quite
easy. A direction set algorithm [1] is applied in both the initial parameter
estimation and object localization to got the parameters of objects with
minimum cost.

6. Experimental results
In this section, the proposed method will be tested with a radar image of

agriculture fields. The radar image in the experiment were acquired from the
1991 NASA/JPL SAR campaign.

The test site was located in southern Flevoland [4]. The land surface is flat.
The soils are homogenous over large areas and are classified as fine-textured
Calcaric Fluvisol (World Soil Map FAO). Southern Flevoland is an agriculture
area with rectangle-shaped fields of ±80 ha. Farmer have subdivided these fields
into smaller parcels and planted a single crop in each parcel. The crops there
are mainly sugar-beet, potato and winter wheat. Fig.3 presents an example of
it. It is a radar image of agriculture field in Flevopolder, the Netherlands. There
are seven land parcels in the scene and they are numbered in the Fig.8. Fig.4
shows the minimum cost predictions of objects acquired in the first stage by
using simulated annealing. Fig.5 illustrates the convergence of simulated
annealing in the first stage. From Fig.5, it is obviously that there are quite a few
local minima in the cost function and the convergence of simulated annealing
is not a process of iterative decrease of the cost. Fig.6 is the initial prediction
in the second stage formed by the initial parameters of objects extracted from
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the minimum cost predictions in the first stage. Fig.7 is the final prediction of
the scene in the second stage. The crop type of each land parcel and its
geometric parameters are listed below. Comparing Fig.6 with Fig.7, the
difference between them is not big. It indicates the first stage does supply a
good initial state for the second stage, which is quite close to the final result.

Here list the coefficients for the computation of radiometric distributions in
formula (3.1). The number of independent samples is 16. The a0 for sugar beet,
potatoes, winter wheat and grass are -12.68 dB, -11.04 dB, -15.05 dB and -
14.07 dB, respectively. Following are the detailed results in the procedure:

Field No.

#1

#2

#3

#4

#5

#6

#7

cpvi
0.4071

0.3562

0.4595

0.3850

0.4288

0.5273

0.4420

Initial parameters

(1, 48, 84, 75, 151)

(1, 59. 204, 100, 87)

(0, 123. 39, 75, 59)

(0, 128, 118, 75, 85)

(0, 140, 206, 53, 83)

(-1. 209, 82, 65. 145)

(1, 207, 201, 75, 77)

C[P0,
0]

690

453

425

477

674

1174

364

Crop type

grass

potato

potato

wheat

wheat

sugar beet

potato

Geometric parameters

(1, 51, 83, 75, 151)

(2, 59, 205, 101, 89)

(-1, 128, 40, 75, 63)

(2, 129, 117, 80, 87)

(3, 139, 207, 54, 83)

(-1, 209, 84, 71, 146)

(1, 207, 204, 75, 87)

Among them, C[P0L'] is the global minimum cost obtained in the first stage.
Each of them corresponds to the geometric prediction of the minimum cost
shown in Fig.4. The prediction of object with the initial parameters in the
second stage is displayed in Fig.6. C[P0|°] is the cost to extract the initial
parameters from Pol'. The final results includes the crop type and geometric
parameters of each parcel. The cost of the final prediction is 3.965.

The experiment with a SAR image of agricultural fields indicates the proposed
method works well in the practical case. More experimental results about its
insensitivities to the initial state and the signal to noise ratio of the image are
reported in other publications.

7. Summary
We have described an approach for the recognition of 2-D objects. In this

method, every subproblem in object recognition is formulated as an
optimization problems, including object identification, the initial parameter
estimation and object localization, and techniques of optimization are utilized
to solve these problems. Cost functions are calculated as quantitative evaluations
of object prediction in terms of their feature fitting and the recognition process
is based on cost minimization. As simulated annealing is applied in object
identification and its results are used to supply the initial parameters for object
localization, our approach does not suffer from initialization sensitivity.
Moreover, the approach is parallelizable and allows a degree of flexibility in
cost function selection.
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