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Abstract

We present an algorithm to build covering polyhedra for digital 3D
objects, by iteratively filling local concavities. The resulting covering
polyhedron is convex and is a good approximation of the convex hull of
the object. The algorithm uses 3 x 3 x 3 operators and requires a few
minutes for a 128 x 128 x 128 image, when implemented on a sequen-
tial computer. Once the covering polyhedron has been obtained, the
object concavities can be identified by subtracting the object from the
polyhedron and suitably post-processing the set difference. Features
characterising the concavities can then be extracted and used as a tool
for quantitative shape analysis.

1 Introduction

The increasing computing power and storage capacity of computers have made
processing 3D imagery possible. Also, various sensors now can register true 3D
data, especially in the biomedical field. Representation and analysis of 3D objects
can then be accomplished without necessitating the use of stereo algorithms or
projections. Most of the evaluation of such images has been done in a qualitative
way, by looking at slices through the volumes or at rendered 3D graphics represen-
tations of the data. In some applications more quantitative comparisons between
different 3D objects are of interest.

Consider the class of non-convex, complex objects. Quantitative shape analy-
sis can be performed by identifying and describing the concavities of the object.
Concavities can be obtained by building the convex hull, [6], and then subtracting
the object from the hull. The convex hull is also interesting in itself.

In many practical cases, an approximation of the convex hull is adequate.
Approximations can be found in the literature, e.g., [1]. Here, we present an
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Figure 1: The area neighbours (dark) and the side neighbours (light) of a voxel.

algorithm to compute a good approximation of the convex hull, which is inspired by
previous work with 2D images, [2,3]. A covering polyhedron is built by iteratively
filling local concavities. Local concavities are defined by the number and the
configuration of neighbouring object voxels. Only 3 x 3 x 3 operators are used, but
curvature information is derived from either 3 x 3 x 3 or 5 x 5 x 5 neighbourhoods.
The algorithm is parallel in nature, but can be implemented sequentially in a
reasonable way.

The covering polyhedron computed by our method is convex and includes the
convex hull. The difference between the polyhedron and the convex hull is reason-
ably small, if local concavity information is derived from a 5 x 5 x 5 neighbourhood.
However, as the polyhedron is an approximation and not the convex hull itself, the
difference between the two sets is dependent of object orientation. In fact, thin,
false concavities will be detected for specific object orientations. Most of these can
be removed by post-processing. Once the significant concavities are identified, dif-
ferent features can be computed to describe and analyse them. We give a number
of suggestions of such features.

2 Algorithm

Consider a binary 3D image consisting of black and white voxels. The black voxels
represent an object and the white voxels represent the background. The object
consists of one area-connected (6-connected) component. The size of the image is
N x N x N and the three outermost voxel planes are white.

Each voxel in a cubic grid is surrounded by 6 area neighbours, 12 side neigh-
bours, and 8 point neighbours. We will not use the point neighbours in our algo-
rithm. The neighbours we do use are illustrated in Figure 1.

Consider a border voxel, that is a white voxel having at least one black area
neighbour. It is located in a local concavity, if it has a sufficient number of black
neighbours in certain configurations.

Faces of the convex hull can occur in all possible orientations. This is not the
case for an approximation. However, the larger the neighbourhood used to identify
local concavities, the more directions will be possible for the planes delimiting the
covering polyhedron, that is computed by iteratively filling the local concavities.
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Working only in limited neighbourhoods, we can thus obtain enough directions for
the polyhedron faces.

We briefly describe our previous 2D filling algorithm, [2], since the 3D algorithm
is partly modelled on it. For each white 2D pixel 4-adjacent to at least one
black pixel (border pixel), the number of black 8-adjacent neighbours is used as
a measure of local convexity. Considering only a 3 x 3 neighbourhood, straight
lines can only be aligned along the eight principal directions. Exactly three black
neighbours indicate that the border pixel is located on such a straight line segment.
More than three neighbours indicate that the pixel is located in a local concavity.
Finally, less than three neighbours indicate that the pixel is located in a local
convexity. If the white pixels having more than three neighbours are iteratively
changed to black, a convex covering polygon is built. It has at most eight sides,
aligned along the principal directions, thus forming an octagon. Due to the limited
number of possible directions, the covering polygon does not fit the object closely.
To improve the result, more directions should be possible for the polygon sides.
This means that a neighbourhood larger than 3 x 3 must be considered.

If a 5 x 5 neighbourhood is used, straight lines consisting of horizontal or vertical
runs of two pixels can also be identified. Border pixels labelled 4, that are located
within local concavities, can be discriminated from border pixels labelled 4, that
are located on straight lines consisting of runs of two pixels. This is accomplished
by inspecting the labels of the neighbours of any pixel labelled 4. If such a pixel is
located on a straight line consisting of runs of two pixels, both its border neighbours
are labelled 2. Thus, we only change to black those pixels labelled 4 that have
at least one neighbour labelled more than 2. When this rule is used iteratively,
a convex covering polygon with at most sixteen sides is obtained. This is still an
approximation of the convex hull, but it fits the object more closely. To get even
better approximations, we should use an even larger neighbourhood, e.g., a 7 x 7
neighbourhood, which is feasible in 2D. The eventual 3D implementation of these
rules would however become too time-consuming.

In the 3D case, the above 2D algorithm is applied on the three principal dig-
ital planes passing through each border voxel. Thus, each border voxel will get
three different labels, one for each principal plane. The algorithm is iterated until
no further border voxels are changed to black. The projections of the covering
polyhedron in the x-, y-, and z-planes will be polygons, with at most eight sides
in the 3 x 3 x 3 case, and at most sixteen sides in the 5 x 5 x 5 case. One could
also consider applying the algorithm to "diagonal" digital planes passing through
the border voxel. However, if this is done, for example, for all the planes that can
be defined in a 3 x 3 x 3 neighbourhood, the resulting covering polyhedron will
always be a rectangular prism.

Each iteration of the algorithm is split into two sub-iterations. The first sub-
iteration is used to label the border voxels, the second sub-iteration is used to
change to black the border voxels fulfilling the concavity criteria. Splitting each
iteration is necessary even in the 3 x 3 x 3 case, since the algorithm is parallel in
nature but implemented on a conventional sequential computer. Each iteration in
the two cases can be summarised as follows.



278

3 x 3 x 3 case

1. For each border voxel the number of its black area and side neighbours
in the z-, y- and z-plane are counted, respectively. If the maximum of
these three sums is larger than 3 the voxel is marked.

2. Marked voxels are changed to black.

5 x 5 x 5 case

1. For each border voxel the number of its black area and side neighbours
in the x-, y- and z-plane are counted, respectively. These three sums,
denoted E*, £„, and Ez, are stored as labels for the border voxel.

2. Voxels with at least one Ej, > 4, (Jfc G {x,y,z}) as well as voxels with
one Efc = 4, and having, in the same plane ib, at least one neighbour
with Ejfc > 2, are changed to black.

Our 3 x 3 x 3 algorithm will produce the same result as that obtained by using
the method presented in [1], where a large number of 3 x 3 x 3 masks are iteratively
applied to the image.

3 Implementation

Some ideas for a good sequential implementation of the 5 x 5 x 5 algorithm are de-
scribed. Our algorithm is written in C and integrated in IMP (IMage Processing),
a general image analysis software for up to five-dimensional image data, developed
at the Centre for Image Analysis. For the visualisation of the images we are using
ANALYZE™, [7].

In the first pass of each iteration, the image is scanned voxel by voxel. We
define a temporary storage image of the same size as the input image, denoted M.
This will be used for the voxel labels and must be emptied before each iteration.
For each border voxel, its ET, Ey, and E2 are computed. If all sums are less than
3, nothing is done, as a label has to be at least 3 to influence the results. If the
maximum of the three sums is 3 or 4, the label values must be stored for the
next step. In this case, we set the value of the corresponding temporary voxel to
L - 16 x max{Ex - 2, 0} + 4 x max{Ey - 2, 0} + max{Ez - 2, 0}. In this way
the three labels can be stored in the same temporary 8-bit image. The combined
value is unambiguous and L € [1,42]. Finally, if any of the sums is larger than
4, the corresponding voxel in the temporary image is immediately marked as one
that should be changed to black, by letting L = 63.

In the second pass, the temporary image is scanned voxel by voxel and only
the voxels with label L > 1 are considered. If the current voxel, v, has L = 63,
the voxel corresponding to v in M is changed to black. Otherwise, L is analysed
to recover information on E r , Ey, and Ez. If one Ejt=4, the neighbours of v in the
corresponding plane ib are examined. If for any of the neighbours we have Ex > 2,
the voxel corresponding to v in M is changed to black. For example, if the voxel
v has L > 32 (denoting Ex = 4 ), the neighbours of t; in the x-plane are analysed.
If any of them has L > 16, the voxel corresponding to v in M is changed to black.
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The two passes are iterated until no further voxels are changed to black. Note
that in the 3x3x3 case the implementation can be done without using a temporary
storage image.

4 Examples

Three test examples are used to illustrate the performance of the algorithm.
The first example shows the effect of applying the concavity filling algorithm

to an already convex object. A digital sphere is convex, but "infinitely" many
plane directions are present in the convex hull. We use a sphere with radius 100
and volume 4,187,857, stored in a 256 x 256 x 256 image. The covering polyhedron
includes a number of extra voxels, because of its limited number of face directions.
In Figure 2, the 3 x 3 x 3 algorithm has been used. The resulting polyhedron is
the rhombicubeoctahedron (one of the Archimedian solids). The volume of the
polyhedron is 14.8% larger than that of the sphere. A better result is shown in
Figure 3, where the 5 x 5 x 5 algorithm has been used. In this case the polyhedron
closely fits the sphere, so that the number of extra voxels is rather small. The
volume of the polyhedron is only 3.7% larger than that of the sphere. All the
following examples use the 5 x 5 x 5 algorithm.

The second example shows how the orientation of the object in the grid in-
fluences the results. The algorithm has been applied to a hollow cone in a
128 x 128 x 128 image. The results are Shown in Figure 4. In the top left position
the original cone is shown, oriented so that its base rests on the z-plane. It is shown
from below to facilitate the comparison with the rotated cone. In the bottom left
position the resulting covering polyhedron is shown. As expected, the bottom is
flat (the z-plane is a possible plane in the covering polyhedron). At top right the
same cone has been rotated in the grid to an oblique position, and at bottom right
the resulting polyhedron is shown. In this case, extra voxels are added at the base,
as the orientation of the base is not one of the possible directions for a plane in the
covering polyhedron. In fact, the concavity is delimited by four different planes.
See Figure 4.

Finally, the third example is an instance of successful application of the al-
gorithm. A cluster of five partially fused spheres, digitised in a 128 x 128 x 128
image, is used. In Figure 5, the cluster is shown in three different orientations to
the left, and the resulting covering polyhedron is shown to the right, in the same
orientations. The polyhedron fits the cluster closely everywhere.

5 Feature extraction

Once the covering polyhedron has been computed, some features can be extracted.
Generally, it is necessary to have some a priori knowledge of the objects under
consideration to be able to decide what features to analyse, especially since 3D
image processing is always time-consuming.

The principal orientations of the covering polyhedron can be used to describe
object orientation. The centre of gravity of the polyhedron can be used to localise
the object.
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F i g u r e 2 : C o v e r i n g p o l y h e d r o n o f a d i g i t a l s p h e r e , 3 x 3 x 3 a l g o r i t h m .

F i g u r e 3 : C o v e r i n g p o l y h e d r o n o f a d i g i t a l s p h e r e , 5 x 5 x 5 a l g o r i t h m .
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Figure 4: Object orientation with respect to the grid influences the covering poly-
hedron. (See text)



282

Figure 5: A cluster of partially fused spheres and the associated covering polyhe-
dron, from different viewing angles.
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The concavity volume, denoted CVV, is computed by taking the set difference
between the covering polyhedron and the object. Unfortunately, CVV will gener-
ally have one single connected component, so that individual concavities can not
immediately be identified. However, the volume of the CVV and the ratio between
this volume and the object volume are global measures of the object concavities.
Other measures can be obtained by first defining the outer surface of CVV as all
its voxels having a white area neighbour. The inner surface is defined as all other
voxels having an area neighbour in the complement of CVV. The ratio between
the outer and inner surfaces (measured as number of voxels) is a measure of object
jaggedness.

Except for rather special cases, CVV has to be processed further to identify
individual concavities. This could be accomplished by computing the distance
transform of CVV from the white voxels, with the black object voxels acting as
barriers (constraints). The constrained 2D distance transformation, [5], can easily
be extended to the 3D case. Distance transformations in 3D are found in the
literature, e.g., [9]. If the distance transform is thresholded at a suitable level,
all shallow, insignificant concavities will disappear, including those consisting of
extra voxels added due to specific object orientations. Only concavities having a
certain depth will remain. The threshold value is of course application dependent.
A connected component labelling, [8], can be applied to the concavity components
obtained after thresholding CVV. Then, the following features can be computed
for each component: the volume, measured as number of voxels; the outer and
inner surface; and the depth, measured as the maximum label in the constrained
distance transform. If the object to be analysed has quite complex concavities
that have to be analysed individually, the filling algorithm can be applied to the
concavity components.

6 Conclusion
We have presented an algorithm for filling concavities of 3D objects. The algorithm
is based on the iterated application of local operators to build a covering convex
polyhedron. Only 3 x 3 x 3 operators are used, but curvature information is
derived from either 3 x 3 x 3 or 5 x 5 x 5 neighbourhoods. Results obtained by
deriving curvature information from the 5 x 5 x 5 neighbourhood are preferable
for applications, as the obtained covering polyhedron better approximates the
convex hull of the object. The filling algorithm has been tested on a number of
images, mostly of size 128 x 128 x 128. Notwithstanding the amount of data to
be processed, the computation required only a few minutes. Once the covering
polyhedron has been obtained, the concavities are identified by subtracting the
object from the polyhedron and by suitably post-processing the set difference.
Features quantitatively characterising the concavities can be extracted. Work in
this area is currently in progress. Applications of the method can be found in
several fields, specially in biomedical image analysis, e.g. [4].
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