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Abstract

This paper examines the problem of automatically grouping image
curves. In contrast, most previous work has been restricted to points
and straight lines. Some of the computational aspects of the groupings
of continuation, parallelism, and proximity are analysed, and the issues
of neighbourhoods, combinatorix, and multiple scales are discussed.

1 Introduction

A common process, both in human and computer vision, is the grouping of fea-
tures extracted from the scene. The majority of previous techniques developed for
grouping have been based on dot patterns [1] or straight lines [7], although there
has been some recent interest in ellipse grouping [15] and curve grouping [3, 11, 16].
Rules for grouping curves need to be more complex than rules for grouping simpler
features since arbitrary curves have more degrees of freedom than dots, straight
lines, etc.

Early this century the Gestalt school of psychology studied the grouping of
sensory phenomena, and identified a number of classes of grouping: proximity,
similarity, closure, good continuation, and symmetry. Research in computer vision
has usually restricted itself to using one or several of these types of groupings. In
this paper we shall concentrate on curvilinearity (good continuation), parallelism,
and proximity.

2 Issues in automating curve grouping

We first discuss several general issues that apply to all the types of grouping opera-
tions: the appropriate scale(s) of analysis; methods for segmenting and completing
curves; and the selection of which subsets of curves are candidates for grouping
together.

2.1 Multi-Scale vs. Natural Scale vs. Single Scale

Since real image curves contain noise, irrelevant detail, and differently sized struc-
tures, it is necessary to take scale into account. When tackling the problem of
scale there are three main approaches that can be taken. The most straight for-
ward is to represent the curves over a fixed range of scales [8]. Although this is
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a robust approach it produces a vast amount of data. A second approach is to
represent each curve at only a small number of interesting or significant scales
which we have called their natural scales [13]. Between each natural scale there
is some qualitative change, e.g. they contain different structures. Finally, the
curve can be represented by a single smoothed version. Either the whole curve
is smoothed uniformly at a single scale or by different amounts over individual
sections [14]. There is a trade-off between completeness and conciseness that is
balanced differently by the three approaches.

2.2 Segmentation and Completion

In this paper we only consider bottom-up grouping, and so extending a curve is a
local operation (although see Elder k. Zucker [4] who argue that completion is a
global process). Rather than determine the extension from just the endpoints and
their tangents we use a section of the curve delimited by the endpoint to the first
singular point (i.e. either a curvature maximum or minimum, or a zero-crossing
of curvature). Singular points are commonly used to represent curves since they
are the most salient locations [5]. Moreover, their position varies little (and is
invariant in the case of zero-crossings) under perspective projection. A similar
approach is taken by Mohan k, Nevatia [11] who segment curves at extrema of
curvature prior to performing grouping. Another reason for segmentation is that
unlike points or straight lines, some curves can be grouped with themselves.

The gap between two curves is interpolated by fitting a smooth curve through
the pairs of endpoints and singular points. Many techniques have been suggested,
although most give similar looking results. We do not consider the exact shape, of
the curve to be crucial, and use a simple technique [10] which fits a smooth curve
such that the curvature at a knot point is equal to that of the circle through the
knot and its two adjacent knots. A curve can also be extrapolated by the same
method using the endpoint and three singular points.

2.3 Grouping Selection

Although it is possible to consider all pairwise (or higher-order) combinations of
curves for grouping, this leads to a proliferation of groupings. Instead, it is common
to select pairs of candidate curves which are suitable for grouping together by
applying a distance threshold, discarding pairs of curves separated beyond this
distance. The threshold is some factor (usually between 1.5 and 5) of the lengths
of the curves. An alternative method for selecting potential sets of curves for
grouping with the advantage of not requiring an arbitrary threshold is to determine
the neighbourhood of each curve based on local constraints. This procedure is often
done for points [1] or straight lines [6] by triangulating the data. The resulting
triangle edges define the neighbourhood relationships. In our case, we triangulate
the endpoints of the curves. In addition, the triangulation is constrained so that
the triangle edges do not cross any curves.

The greedy triangulation algorithm was used. Although it is possible to design
a greedy triangulation algorithm with complexity O(n2 log n) the simpler version
we have implemented is O(n3) [12]. The triangulation is determined by generating
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all I J potential edges between pairwise combinations of curve endpoints. Any

edges that intersect the curves are removed. The remainder are then considered
in order of increasing length. An edge is retained if it does not intersect any of
the previously retained edges, otherwise it is discarded. The final set of retained
edges makes up the constrained triangulation. Testing for intersection between
potential edges and curves is an expensive process since each edge has to be tested
for intersection with all the short line segments formed by all pairs of adjacent
points within each curve. However, the process is speeded up by first checking the
MBR of the curve. Only if the edge intersects the MBR are the line segments that
form the curve tested for intersection.

3 Grouping operations

3.1 Continuation

Several techniques have been described for detecting the continuation of straight
lines, i.e. colinearity [7]. Since the shape of straight lines is more restricted than
curved lines the grouping rules can be much simpler. In contrast, detecting the
continuation of curved lines needs to take into account the amount of bending and
the possibility of structures existing at multiple scales. To some degree this has
been addressed by the following methods.

Meer et al. [9] approximate curves in a pyramid by straight lines, and their rules
for grouping curves involve the length of the straight line separating their end-
points, the difference in orientation between the two line segments to be grouped,
and the similarity of curvature of the two curves. The curvature is based on the
change in orientation of the last three line segments at the end of each curve. Mo-
han k, Nevatia [11] also use the Euclidean distance between the ends of the curves.
Their other factor is the difference in angles between the connecting straight line
and the tangents to the endpoints of the curves. Dolan k. Riseman [3] repre-
sent all curves by conic splines. Colinearity between pairs of curves is based on
the distance between their endpoints, the angular difference between the endpoint
tangents, and the percentage overlap of the curves.

In a similar vein to the above techniques we evaluate curvilinearity based on
the gap distance relative to the lengths of the curves, and the amount of bending
of the completing curve. Rather than complete the curves with a straight line they
are interpolated as described previously. It is the length of this interpolated section
that is used rather than the Euclidean distance between the curve endpoints. The
curvilinearity measure takes the form

hn terp

/l + /2

where knter is the length of the interpolated curve bridging the gap, and l\ and h
are the lengths of the two curves being grouped, and Kmax is the maximum cur-
vature of the interpolating curve. Perfect curvilinearity produces a response of 0.
Non-perfect groupings produces larger positive values. Advantages of this measure
are that it allows long curves to bridge larger gaps, and that it is scale independent.
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However, it has the disadvantage that all collinear curves (i.e. perfectly aligned
straight lines) produce a zero response irrespective of their gap.

3.2 Parallelism

Determining parallelism for straight lines mainly involves their overlap and ori-
entation [7]. Since the shapes of arbitrary curves are more variable the grouping
rules need to be more complex. Bergevin & Levine [2] approximate curve sections
by circular arcs. Parallelism can then be based on overlap, radii, and circle centres.
However, arbitrary curves may not be readily decomposed into circular arcs.

More generally, Mohan & Nevatia [11] search for symmetric pairs of curves,
which are a superset of parallel pairs. Curves are segmented at curvature extrema
and all combinations of curve sections generate a symmetric axis. This is pruned
by eliminating axes formed by pairs of curves with dissimilar lengths or little
overlap. The most significant axes are selected based on a weighted sum of the
following measures: the length of the contours covered by the axis; the ratio of the
axis length to the two curves; the similarity of the length of the two curves; the
amount of skew between the curves; parallelism between the curves; parallelism
between the ends of the curves; and the length of the axis. An advantage of
this approach is that sections of curves are grouped as wholes, thereby reducing
computation compared with a point by point analysis.

We substantially adopt Mohan k Nevatia's approach. Curves are segmented
at singular points as described previously. The symmetry axis between two curve
sections is denned as the locus of midpoints of the lines joining points at equal
length ratios along the curves. Figure la shows two curves C\ and Ci of length
si and si. A point x on curve C\ is mapped to a point y on C? if and only if

a b

where a is the length of the section of curve C\ up to i , and 6 is the length of C%
up to y. Since we are detecting parallelism rather than skew the symmetry axis
is not of direct interest. Rather it can be used to assess the potential parallelism
by enabling two measurements to be made, namely the separation between the
curves and the amount of overlap of the curves onto the symmetry axis.

Since the curves have been segmented into simple sections with monotonically
increasing or decreasing curvature it is generally adequate to test the separation
at just the endpoints and midpoint. If the endpoints of the curves are skew then
the joining lines that define the symmetry axis will overestimate the separation
of the curves. The true separation of the curves at a point on the axis is found
more accurately by starting on the curve at the point associated with the axis.
The curve is tracked along until a local minimum distance from the axis point is
found. Usually this is also a global minimum and the new line is normal to the
curve (figure lb). For each endpoint this process is applied to both curves and
the smaller of the two minimum distances is taken. For the midpoint only one
curve need be examined and the smaller of the local minima found when tracking
in either direction is kept. The ratio of the minimum and maximum values of the
three measured separation distances are used to define the degree of parallelism of
the curves.
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Figure 1: Calculating parallelism

Overlap of the curves is calculated by detecting the amount of overshoot of
each curve when mapped onto the other. At each end of the symmetry axis the
point closest to the endpoint of the curve which was not involved in the minimum
separation described in the previous paragraph is determined. We call these points
the secondary end points. Overlap is denned as the ratio of the length of the
axis between the secondary end points to the length of the complete axis. This
is approximated by the straight line segments from the axis endpoints to the
secondary endpoints, and from the secondary endpoints to the midpoint of the
axis as shown in figure lc. Thus the overlap ratio is:

mi + m2

mi + m2 + ei + e2

The parallelism of curves is sometimes split into two categories in which two iden-
tical curves are simply translated, or the curves alternatively shrink and expand
with respect to each other so that sections of one are nested within the other. The
first category are only approximately parallel. As the curves become closer the
variation in the separation along the axis becomes more apparent. The techniques
for measuring parallelism described above does not need to distinguish between
the two categories.

The parallelism measure is calculated in a similar manner to curvilinearity,
based on the gap distance relative to the lengths of the curves, and the degree of
overlap between the curve:

'gap
(1 r overlap)

where lgap is the distance between the curves, li and ^ are the lengths of the
two curves being grouped, and rover\ap is the overlap ratio calculated as above.
A reasonable approximation for lgap is the sum of the perpendiculars at either
end of the curves. Perfect parallelism produces a response of 0, and non-perfect
groupings produce larger positive values. As before, this measure allows long
curves to bridge larger gaps, is scale independent, but produces a zero response
for all perfectly aligned parallel curves irrespective of their gap.

In a similar manner to the curvilinear grouping, an alternative mechanism to
distance thresholding for selecting curve sections for potential groupings is to trian-
gulate the curve sections. A constrained triangulation can be formed as described



270

previously, where all curvature extrema and curve endpoints are taken as triangle
vertices. Sections are only considered for parallel grouping if they are connected
by a triangle edge.

3.3 Parallel Groupings

In addition to pairwise parallelism it may be useful to find larger groups of mutually
parallel curves. This can be done by creating a graph whose nodes are the curves,
and contains arcs between pairs of nodes if the two curves satisfy the parallelism
relationship. The biggest set of mutually parallel curves is given by the largest
maximal clique in the graph. A simple example of this is demonstrated in figure 2a
which shows an Ehrenstein sun figure with some distorted and missing lines. We
have set the constraint on allowable difference in orientation between parallel lines
to be 45°. The largest maximal clique in the graph produces the lines shown in
figure 2b. This procedure can be reapplied to find less significant parallel groups.
Deleting the nodes comprising the largest maximal clique from the graph, the lines
forming the next largest maximal clique are shown in figure 2c.

Figure 2: Ehrenstein sun figure and the two largest mutually parallel groupings

3.4 Proximity

Curves are considered proximal if they are near to each other. More specifically,
we can divide proximal groupings into three classes of increasing specialisation: 1)
any part of one curve is near to any part of a second curve - this includes a curved
version of T junctions; 2) only their endpoints are near; and 3) the endpoints are
close and the curves extend to a common point - this is also called cotermination.
When the endpoints are close (classes 2 and 3) they can be grouped to form a
virtual line (a well known example is the Ehrenstein sun figure).

We apply the following method for detecting virtual lines using triangulation.
The problem is simplified by considering the triangulation of the curve endpoints
since the virtual lines will be approximately outlined by the triangle edges. One
way of hypothesising virtual lines with specific shapes from amongst the edges
is to apply the Hough Transform. Edges are accumulated, and peaks in accu-
mulator space define the parameters of likely virtual lines. Votes can be made
inversely proportional to the lengths of edges. This ensures that close endpoints
are considered more significant than distant ones. It is advantageous to apply the
Hough Transform to the triangle edges rather than to the curve endpoints since
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the edges contain more information. First, the edges provide orientation informa-
tion, thereby simplifying and improving the detection of the virtual lines. Second,
they also take into the account lines which cross the virtual line, thereby weak-
ening the illusion of the virtual line. This effect cannot be easily included if the
endpoints are grouped directly. In comparison, such lines prevent some triangle
edges forming, and therefore the Hough Transform will produce a weaker peak in
the accumulator.

Work is underway on detecting coterminations. Currently, proximity is not in-
corporated, and all curves are extrapolated at each end using the endpoint and the
three adjacent singular points. Using a graphics routine the extrapolated curves
are written into an image. Coterminations are identified as curve intersections,
and are found by searching for peaks in the image. Since the confidence in the
extrapolation decreases with distance from the original curve endpoint, the plotted
values are made inversely proportional to the distance. To allow for inaccuracies
in the intersections the image is blurred before searching for peaks.

4 Examples

Figure 3a shows a test set of curves which will be used to demonstrate the different
grouping operations. The natural scales of these curves are shown in figures 3b-f,
where the thickness of the curves is proportional to the amount of smoothing (for
more details see Rosin [13]). For display purposes the curves have been separated
into five sets (the maximum number of natural scales for any curve).

The constrained triangulation of the curves to determine their neighbourhoods
is shown in figure 4. The method of extending the curves prior to their smoothing
ensures that their endpoints are fixed [14]. Therefore, a curve at all its natural
scales will have identical endpoints. Triangulation of the curves at different scales
will not necessarily be identical since, in general, the curve shifts locally. This
affects the constraint on the triangle edges not intersecting the curves. However,
the triangulation will be similar, and any differences will be local. Therefore, for
simplicity we only perform triangulation at one scale (the unsmoothed data) and
apply the neighbourhood relationships at all scales.

An example of curvilinearity grouping from the end of one curve is shown in
figure 5a. The curve of interest is drawn bold, and the end being grouped is
circled. Grouping is restricted to the ends of those curves which are connected by
a triangle edge to the endpoint of the curve of interest. The interpolated curves
are shown in figures 5b-e in decreasing order of merit.

To detect parallel structures we segment the curves at curvature extrema which
are then triangulated. This can be expensive if triangulations are performed for
all combinations of curves at different natural scales. Here we restrict the trian-
gulation to a single set of natural scales. The triangulation of the coarsest natural
scales is shown in figure 6a. Maxima, minima, and zero-crossings of curvature
are marked by boxes, circles, and crosses respectively. Figure 6b shows a selected
curve section (drawn bold) and the potential parallel curve sections connected by
at least one triangle edge (drawn in grey). The two curve sections producing the
best parallel measure are shown in decreasing order in figures 6c&d. The thin lines
are calculated by searching for the local minimum distances between the curves
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V
Figure 3: (a) original curve; (b)-(f) natural scales

Figure 4: Constrained triangulation of curves at original scale

X C

Figure 5: (a) one curve (bold) and its neigbours; (b)-(e) best continuations
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and indicate the amount of overlap. The remaining potential curve sections had
zero overlap.

\

£
Figure 6: Detecting parallel groupings

To determine virtual lines the triangle edges in figure 4 are input to the Hough
Transform (bin sizes are p — 8, 0 = 9°). Figures 7 shows the virtual lines (drawn
bold) corresponding to the two largest peaks. The endpoints of the triangle edges
(and therefore also the curves) that gave rise to them are circled.

Figure 7: Virtual lines (bold) generated by triangle edges (circled)

Finally, the detection of coterminations is shown for the image in figure 8a.
Results are only shown at a single natural scale; the curves at this scale (drawn
bold) with their extrapolations are shown in figure 8b (the distance weighting is
not shown). The extrapolation image is averaged with a 5 x 5 window and the 10
largest peaks (shown by circles with radii proportional to peak size) are overlayed
with the curves in figure 8c.

Figure 8: Detecting coterminations
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5 Future work

We have described methods for performing various curve grouping operations.
Future work will concentrate on analysing their performance in terms of robustness
over a range of data, and their relationship with human visual processing [4],
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