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Abstract

In this article, we present how it is possible to recover physical parameters of
objects such as reflectivity, emissivity and thermal inertia from the analysis
of infrared images in outdoor scenes. Our approach is based on the extensive
use of the physical laws that are at the origin of the formation of images.
First, we derive a physical model that describes how surface patches of ob-
jects appear in infrared images. Second, in order to calculate the physical
properties of objects, we inverse this model by using a least square fitting
method. Because of the non-linearity of the model, we show that it is diffi-
cult to obtain accurate results about the physical properties. To overcome
this limitation, we demonstrate that, under several assumptions, there exist
some physical invariants that are more reliable than physical parameters.

1 Introduction
In order to establish descriptions of the physical world from images, some researchers
exploit the fact that the intensity in the image is produced by some physical process
that can be modeled. These process based on physical laws depend on many factors
such as object properties, sensor parameters, illumination conditions and coefficient of
transmission between the object and the sensor. Theories and algorithms using always
more rigorous knowledge of the physical phenomena underlying the formation of the
images have been developed [5].

Horn and Woodham pionneered work in photometric stereo, that uses a lambertian
reflection model, to recover surface albedo and shape [3, 12]. More recently, models of
reflection that are able to deal with more and more kinds of surface have been developed
[7]. Color and highlights have been analyzed in order to segment color images [6].

While most work in physics based vision deals with intensity or color images, we chose
here to explore infrared vision. Our goal is to recover physical properties of objects from
infrared images. Unlike classical images, the physical process leading to the formation
of infrared images involves not only reflectivity but also emissivity and thermal inertia
of objects. Emissivity is defined as the ratio between the emitted radiation from a real
surface and the emitted radiation from a blackbody surface at the same temperature
[11]. Thermal inertia characterizes the capacity of a material to absorb and restitute the
energy more or less rapidly.

In Section 2, we present a complete physical modeling, based on heat transfer physics,
that allows us to understand and to predict how points of objects will appear in infrared
images. In Section 3, we develop a method in order to inverse our direct physical model
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and to recover the three physical parameters of objects (reflectivity, emissivity and ther-
mal inertia). Applying this method to an experimental scene constituted of horizontal
surfaces of sand lead to reasonable results. Although reasonable, these results come from
the resolution of a typically ill-posed problem which is the backward problem for the
heat equation [1]. Even if the errors on temperature are close to 0, the errors on physical
properties are not necessarily close to 0. In Section 5, we evaluate the degree of ill posed-
ness of our problem and we show the existence of three "physical invariants" that are the
combinations of emissivity, reflectivity and thermal inertia. For different vectors of the
three physical parameters, these invariants have the remarkable property to lead to the
same temperature at the surface of objects. These invariants then define class of objects
that can be distinguished. Noise effect is also studied showing that "physical invariants"
are more reliable than physical parameters.

2 Physical Modeling

2.1 The Camera Equation

The pixel intensity in an infrared image is proportional to the quantity of thermal energy,
lying in the infrared spectrum and coming from the corresponding point in the 3D scene.
More precisely, this energy called GCam is composed of two different terms: radiation
emitted by the object Erad, and radiation coming from the environment that is reflected
by the object in the infrared spectrum ETir. Thus, this leads to what we call the camera
equation:

^-*cam —- i^rad ~r ^Jrir \ )

Gcam is the information in the image that will allow us in Section 3 to recover the physical
properties of the surface of the object. Unfortunately, the determination of the origin
of Gcam is not possible if we only know intensity pixel. This comes from the extreme
complexity of heat echange phenomena (a priori not known) that lead to Gcarn, through
the two terms ETad and Er,r • In particular, Erad is directly related to the temperature
of the surface by the well known Stephan-Boltzmann law ETad — tcrT* (where c is the
emissivity of the surface and a is the Stephan constant). This last equation means that
there is no way to model GCam as a function of the physical properties of objects if the
temperature at the surface of materials has not been modeled before. In the two following
sections, we therefore concentrate on developing a complete modeling of the temperature
at the surface of objects.

2.2 Modeling Body and Heat Exchanges

We model the body as an homogeneous semi-infinite body whose surface is planar and
horizontal. The assumption of body homogeneity allows us to consider that the conduc-
tivity k, the density pm and the specific heat cp are the same everywhere in the material.
Since the body is supposed to be semi-infinite with a planar surface, we can consider that
the heat flux is one-dimensional and propagates along the perpendicular direction x to
the surface (Figure 1). In practice, a body can be considered as a semi-infinite body if
its dimensions are sufficiently large (i.e., higher than a critical dimension that depends
on the physical characteristics of the material) 1.

Heat exchanges between the body and its environment are governed by the conser-
vation law of energy which tells us that the energy received by the surface is equal to the

1 For materials such as sand used in our experiment, the critical dimension is a few ten
centimeters.
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Gdr + Gdf
Er + Ecv

Figure 1: Heat exchanges at the surface of the body.

energy leaving the surface: G = E where:

G = Gdr + Gdf + Go. + GT + GenvI G =
\ E =

• Gdr is the energy coming from the sun,

• Gdf is the diffuse energy coming from the sky,

• Ga is the energy emitted by the sky,

• Gr is the energy reflected by the environment:

• Genv is the energy emitted by the environment,

• Er is the energy reflected by the surface of the object:

1. Ervi, is the energy reflected in the visible,

2. ETiT is the energy reflected in the infrared,

• Erad is the energy emitted by the surface of the object,

• Eod is the energy conducted through the material,

• ECv is the energy convected by the atmosphere,

• EeV is the energy needed for water evaporation.

System 2 shows the various origins of heat exchanges between the object and its
environment. These exchanges all contribute to the formation of the infrared image
(Figure 1). In order to calculate the temperature of the surface, we need to explicit each
term of system 2 as a function of elementary parameters.

First, direct energy Gdr from the sun mainly lies in the visible spectrum. In the
experiment described in Section 4, this energy, falling on an horizontal surface is measured
with a pyranometer placed horizontally. Diffuse energy Gdf coming from the sky is
also measured with the pyranometer. This energy comes from the diffusion of light
by aerosols in all directions. Second, the emitted energy from the atmosphere Ga, lies
in the infrared spectrum. In our modeling, Ga falling on an horizontal plane is not
measured but approximated by using a semi-empirical equation due to Idso and Jackson
[4]: Ga — eaaTa where Ta is the atmosphere temperature and ea is its emissivity that
depends on Ta that is measured with a meteorological sensor. Third, for simplicity, we
will consider that the world around the scene, seen by the camera, is flat and horizontal.
Then, the energy reflected by the environment and falling on the horizontal surface of the
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object is Gr =; 0. Fourth, since the environment is supposed to be a flat and horizontal
surface, the emitted energy from the environment in the direction of the surface of the
object is GeTlt, = 0. Fifth, energy Er, reflected by the surface of the object (only the first
reflection), is the sum of the reflected energy in the visible and the energy reflected in the
infrared : Er = p(Gdr + Gdj) + (1 — f)Ga where p is the reflectivity of the surface in the
visible spectrum. The term 1 — c is the coefficient of reflection in the infrared according
to Kirchhoff's law. Sixth, energy ETad emitted by the surface of the object is governed
by Planck's law: Erad = e<rT4(0,t) where T(0, t) is the temperature at the surface of
the material (x — 0) at time t. Seventh, conducted energy Ecd within the material is
given by Ecd = — k (—^*' ' ) _ Eighth, convective energy Ecv is Ecv = h[T(0, t) — To(()]
where h is the convection coefficient. This coefficient is determined by using empirical
formula [13] taking into account the wind speed Va that is measured with an anemometer.
Lastly, evaporation requires a certain amount of energy to transform water into water
vapor. This energy is very often small with regard to other kinds of energy. However, this
phenomenon cannot be neglected if materials are humid. In our modeling, we used an
empirical formula, reasonably well adapted to our problem [8] : Eev = (a + iVo)(_Ps — Pv)
where Ps is the pressure of saturating water vapor and Pv is its partial pressure. Ps and
Pv depend on Va, Ta that have been introduced previously and Pa (atmospheric pressure)
that is also measured by a meteorological sensor.

2.3 Calculating Temperature of Objects

The equation of energy conservation is a boundary condition that describes the heat
exchanges at the surface of bodies. Though necessary, this equation does not suffice to
determine the temperature at the surface of the material. We also have to determine
the temperature within the material. This is given by the well-known heat conduction
equation which is a one-dimensional partial differential equation of the second order
depending on time t and depth i in the material.

t) d2r(x,t)
a (3)

where a = —-— is the coefficient of diffusion of the material, k is the conductivity, pm
PmCp

the density and cp the specific heat. We need another boundary condition to describe
how the temperature behaves on the other side of the material (i.e., for x higher than a
certain depth). A reasonable assumption is that the temperature is constant for x higher
than a critical dimension / that depends on the thermal parameters k, pm and cp:

Vx>l,T(x,t) = Tt (4)

Of course, this assumption requires that the depth of the object is at least equal to its
critical dimension which is, in some cases, a severe limitation to our modeling.

Equations 2, 3 and 4 completely describe the thermal phenomena at the surface and
within the material. Since some parameters such as Gdr -\-Gdf, Ta and Va are measured,
it is necessary to rely on numerical analysis to calculate the temperature at the surface
of the object. By using a finite difference method, it can be shown that these three
equations can be written as follows:

f Tm,n+1 = (1 - 2S)Tm,n + 5(Tm+i,n + Tm_i,n)
\ Hn = C\To%n + C^To.n + CsTl^n (5)
I Tm,n = Tm-i,n si mSx > I

where S = jj-f^ (called stability coefficient that is a constant less than 0.5 to ensure
convergence of the model), Hn = (1 — p)(Gdr,n + Gdf,n) + t{Ga,n) + hTa,n, C\ — «r,
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Ci — h+ j - , C3 — — j - , by — ^-, and Sx and St represent respectively the space step
and the time step such that x = mix and t — nSt.

It is remarkable that the three physical parameters k, pm and cp are gathered within
only one parameter / = \fkpmcp called thermal inertia. This is particularly interesting
since it is now possible to reduce the class of possible materials to be studied from a
three dimensional space (fc,pm,cp) to a one-dimensional space / . This is done by setting
8y = $f- that plays the same role as Sx.

Knowing Ta, Gdr,Gdf and Va at each time step (measured by meteorological sensors)
allows us to calculate the temperature at the surface of the body by solving System 5.

3 Recovering Physical Parameters
The resolution of System 5 allowed us to determine surface temperature for various values
of p, t and / such that p = ^-, c ~ ^-, / = 4500 x ^- where r, e and i G {0, • • •, 31}.
The interval for I was chosen in order to contain solutions corresponding to materials of
our experiment. 7 = 0 and I = 4500 respectively correspond to a material that does not
conduct heat at all and a material that well conducts heat.

The basic idea of the method for recovering the three physical parameters of objects
is to look for the vector v = (p, e, I) among the set of possible combinations for which
the modeled radiation best matches the experimental radiation measured by the cam-
era. Mathematically, this can be done by minimizing the following least square fitting
criterion:

N

, m i n , ~/v ] C 7a [G™°4n) ~ GexP(n)f (6)
H = l

In Equation 6, N is the number of infrared images to be analyzed (TV = 360, i.e, one
image every four minutes). The term Gmod(n) is the theoretical radiation received by the
camera at time n. Gmod{n) = Erad{n) + ETir.(n) = €ffTJJlod(n) + (1 — c)Ga(n). The terms
Gexp(n) and An are respectively the mean experimental radiation received by the camera
calculated in a squared patch of image n, M pixels in size, and the standard deviation of
the radiation in the patch. Since we set e to one in the electronics of the camera during
our experiment, Gexp(n) = <rTp>eudo(n) where TpSeudo(n) is the temperature delivered by
the camera in image n.

4 Experiment and Results
We have conducted a one day experimentation in outdoor scenes that consisted in ac-
quiring infrared images of a sandbox (3m x 3m x 0.7m) filled with three kinds of sand.
These dimensions allowed us to consider the sandbox to be a semi-infinite body. We
also acquired meteorological parameters such as Gdr + Gdf, Ta and Va at the rate of one
measurement every 6 minutes by using a meteorological station installed on the experi-
mental site. The three layers of sand (gravel, medium sand and fine sand) 3m x Ira in
size can be seen in the visible in Figure 2 (a) and in the infrared in Figure 2 (b). These
two images are not calibrated but are taken almost in the same direction. This allows us
to have a good idea of how the three layers of sand appear in both images.

We applied the algorithm presented in Section 3 in order to calculate p, t and I for
the three kinds of sand. Figures 3 (a), (b) and (c) are intrinsic images of reflectivity,
thermal inertia and emissivity of the sandbox (limited to the area of the three layers
of materials). These images were obtained by applying the least-square fitting criteria
to a sequence of TV = 360 images. Gmod and Gexp were calculated in surface patches,
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(a) Visible image (b) Infrared image

Figure 2: Visible and infrared images of the sandbox.

8 pixels in size. The calculation was repeated 64 x 64 different times in order to cover
the entire image of 512 x 512 pixels. In fact, only the horizontal part of the sandbox
can be correctly interpreted since our modeling assumes that the surface of objects is
horizontal. At each point in the image, the grey level represents the physical parameters:
reflectivity, thermal inertia or emissivity. White pixels correspond to points of the scene
where the value of the physical parameter is high while dark pixels correspond to low
values. Much information can be extracted from this set of three images that give a fairly
good representation of actual physical parameters.

(a) Reflectivity (b) Thermal inertia (c) Emissivity

Figure 3: Intrinsic images of the sandbox.

Firstly, in Figure 3 (a), fine sand has a higher reflectivity than for gravel or medium
sand. This is in accordance to actual data. A qualitative comparison with Figure 2 (a)
shows that intensity levels are ordered the same for the three layers of sand. Points in
the medium sand and gravel layers have similar intensity which means that they have
close reflectivity. Again, this matches reality fairly well.

Secondly, in Figure 3 (b), the difference of thermal inertia between the three materials
is small. However, one can notice that fine sand is slightly darker than medium sand, and
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gravel

medium

fine

modeled
actual

modeled
actual

modeled
actual

P
0.56
0

0
0

0
0

42

53
41

64
.5

1.0
0

0.
0

9

99
9

0.96
0 9

/ {Ws

800

1/2rr
565

0 a
377

284

i-2K-x)

0

1000.0
0

10

0

:s300.0

Table 1: Modeled and actual characteristics of the three kinds of materials.

medium sand is darker than gravel. This is correct since the thermal inertia of fine sand
is lower than the thermal inertia of medium sand, and the thermal inertia of medium is
lower than the thermal inertia of gravel. Furthermore, though the small rock does not
satisfy the assumption of semi-infinite body (surface not horizontal), it appears whiter
than the three other materials which means that its thermal inertia is higher than for the
three other materials. This matches actual data. In Figure 3 (b), a small white patch in
the left part of the fine sand layer was correctly displayed and corresponds to a pebble
that is almost not perceptible in Figure 2 (a).

Lastly, Figure 3 (c) is composed of white areas where emissivity is equal to one and
black areas where emissivity is close to 0.7. This shows that this parameter globally
takes high values. However, emissivity can be somewhat different from point to point
in the image. In fact, high variations of the emissivity cause relatively small variations
in temperature. Therefore, small errors in temperature measurements can cause high
variations in the emissivity.

Quantitative results are presented in Table 1. For each material, modeled values were
determined by applying our algorithm to one given patch of surface. All modeled values
for p and c are higher than actual ones while modeled values for / are lower than actual
ones. We think that there are two types of explanation for these errors; on one hand,
approximated modeling for atmospheric radiation, convective radiation and evaporation,
on the other hand, errors due to the non-linearity for the conduction equation.

The first kind of errors are called systematic errors and their treatment is often
awkward because they are closely related to measurement errors [9]. The second kind of
errors is due to stability of the backward process. In the following, we will concentrate
on the second kind of errors because they are intrinsic to the inverse process.

5 Inverse Problem Analysis
For numerous applied problems, it is important to analyze the stability of solutions with
regard to small variations of initial data (i.e., physical parameters). Problems that do
not satisfy this condition of stability are said "ill-posed" [10]. To solve these problems,
one has to define the concept of approximate solutions. In our case, the temperature of
objects depends on a vector v of physical parameters v = (p,c,I). Let us call AT the

application V —<• T that associates at each vector v in space V the curve of temperature
of the material in space T (on a period of time 2-K/UI — 24hours). One may define a
distance d[T\,T2) between two curves of temperature T\ and T2 in space T:

d(Tu%) = -=-
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Let us now define a distance rf(»i, V2) between two vectors of physical parameters in space

V where Ti = AT(«i) and T2 = AT(v2); d(vuv2) = y/(p2 - Pi)2 + ( 0 - ci)2 + (h - hf-
To analyze the inverse problem, two questions have to be studied:

• Unicity of the solution of the inverse problem?

• Stability or sensitivity to noise?

In order to discuss the first question, it is convenient to have an analytical solution
for the direct problem (i.e., an analytical expression of the temperature at the surface of
the object as a function of physical parameters). We obtained such an equation in [2]
under the following assumptions. First, the surface of the object is planar and horizontal.
Second, solar radiation is modeled as a semi-sinusoidal function of time (no radiation at
night). Third, the atmosphere temperature is approximated by a sinusoidal function
whose period is equal to 24 hours with its maximum during sunshine and its minimum
at night. Fourth, wind speed is modeled by its mean value on a one day interval. Fifth,
because of the rather small dynamics of material temperature (compared yo its mean
value), the infrared radiation emitted by the surface that is the fourth power of the
temperature is modeled as a linear function: <TT* m A + BT where A = — 945 and
5 = 4.62.

The calculation that leads to the complete analytical expression of the temperature
is rather complicated and we have not enough space to report it here (see [2] for de-
tails). This temperature is a function of numerous parameters: reflectivity of the surface
p, emissivity of the surface e, thermal inertia of the material / , solar constant, solar
declination, latitude, emissivity of the atmosphere eo, transmissivity of the atmosphere,
temperature of the atmosphere Ta and wind speed Va. If we suppose that ta = 1 and the
amplitude of the atmosphere temperature is zero, then this expression leads to a simpler
equation that can be written as a function of time t and two parameters called Ai and

T(t,XltX2) = Co+CiA2+
 C z A 2 cos(u>< - fl(AQ)

/ l + 2 A + 2 2 A 2

where Co is a constant. C\, Ci and Cs(n) depend only on latitude and solar declination
and,

x <9>

Equation 8 depends only on Ai and A2 and not on p, t and / separately. The
assumptions that lead to this result are quite realistic since to is in many cases close to
one and the amplitude of the atmosphere temperature is much lower than the amplitude
of surface temperature.

Equation 8 is an important result since it means that two materials with different
physical parameters but with same \\ and A2 will have the same thermal behavior at their
surface and are therefore not distinguishable. We will call these parameters "physical
invariants" because objects with the same Ai and the same A2 will have the same
temperature. Therefore, Ai and A2 describe distinguishable class of solutions of the
inverse process for the heat conduction problem and can be used to distinguish between
two different class of materials. Since Ai and A2 are physical invariants, A3 = j1- = y^- is
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also an invariant that has the pecularity to be solely dependent on the physical parameters
of the material.

Figure 4 shows the geometrical representation of Ai and A2 in the 3D space of the
physical parameters e, p and I. Figure 4 (a) represents physical parameters that are
solutions of Equations 9 and 10 where Ai and A2 have constant values. The intersection
line of the two planes is the solution of T(t, t, p, I) = T(t, 0.9,0.5, 500) = T(<). Therefore,
the solution to backsolving the heat conduction equation is not unique. This non-unicity
can be explained in terms of physical invariants that give rise to class of possible solutions.

In order to analyze noise effect, we used our numerical modeling to calculate the tem-
perature T(t) of a material that has the same physical parameters as previously: e — 0.9,
p = 0.5 and / = 500Ws1'2m~2K~1. A gaussian noise with mean value equal to zero and
standard deviation <r = 0.8 was added to this temperature. In Figure 4 (b), the two point
sets respectively correspond to the best solutions T2(t) for d(T\,T2) < 0.2 where d{T\,T2)
is defined by Equation 7 with Ti (t) = T(t, 0.9,0.5,500) and Tj (t) = T(t, 0.9,0.5, 500) + <r.
A threshold of 0.2 was chosen because the noise equivalent temperature difference that
can be perceived by the infrared camera of our experiment is equal to 0.2°C. In Figure 4
(c), the two line segments are least square approximations of the two point sets of Fig-
ure 4 (b). These two line segments are almost superposed which means that the solutions
of physical parameters found by Equation 7 are little dependent on noise. As obtained
with the analytical model, the solutions given by the numerical model is a line segment
in the 3D space of the physical parameters showing the non-unicity of the solution.

.•*

(a) Theoretical data (b) Experimental data (c) Linear approximations

Figure 4: Solutions to the inverse problem for the heat equation. In (a), / £
[0,519], e and p £ [0,1]. In (b) and (c), I E [100,600], e G [0.7,1.0] and p £
[0.4,0.7].

6 Conclusion
For many years, researchers working on early vision problems have been interested in
recovering physical properties of objects such as reflectivity and shape from classical
images. In this article, we addressed the problem of determining physical parameters of
objects such as reflectivity, emissivity and thermal inertia in infrared images.
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We developed a complete numerical modeling based on physical laws of heat transfer
in order to understand how points of semi-infinite objects, whose surface is planar and
horizontal, appear in infrared images. Then, we presented a method for recovering the
three physical parameters of objects. Applying this method to an outdoor scene composed
of three kinds of sand lead to reasonable results. In particular, fairly good intrinsic
images of physical parameters were obtained. However, the analysis of an analytical
expression of the temperature allowed us to show that the vector of physical parameters
is not unique. We found the existence of physical invariants that describe this non-
uniqueness; objects that have different physical parameters but have the same invariants
are not distinguishable. On the contrary, class of objects that have different physical
invariants can be distinguished. Physical invariants are therefore more reliable than
physical parameters to discriminate objects.
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