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Abstract

Feature extraction by applying a threshold window to image intensity
values is a simple and common image processing technique. We con-
sider the case of 3D images where intensity based feature extraction is
used to determine the volume of objects of interest. We show that the
accuracy of volume determination is limited by partial volume (PV)
effects. We outline a new method for correcting for PV effects based
on object geometry and object intensity. Although this PV correction
has been developed with respect to a specific application in magnetic
resonance imaging, it is applicable to volume extraction by threshold-
ing in any image and can possibly be extended to other intensity-based
extraction techniques.

1 Introduction

Intensity thresholding techniques, such as histogram analysis or intensity- based
region growing, are frequently used for segmentation of arbitrarily shaped objects
from a data volume such as a 3D magnetic resonance (MR) image. At the bound-
ary of an object, part of the volume of each voxel is occupied by the object and
part by a background. This creates a layer of voxels with intensities intermediate
between the object and background values. We refer to this intensity averaging
due to image sampling as the partial volume (PV) effect. Thus, for any sampled
image, the estimated volume of an object depends on the intensity threshold used
for extracting the object. This is the case even if pure object and pure background
intensities are well separated.

We reason that it is possible to apply a systematic correction to control the
pollution of the volume calculation induced by PV effects. Our correction to the
volume is based on the surface area of the thresholded object.

This work emerges from the problem of segmenting multiple sclerosis (MS)
lesions in MR brain images as accurately as possible. Lesion volume is a widely
used measure of disease burden, and its determination with maximum precision
is desirable. For this application, intensity-based segmentation techniques have
potential advantages over edge-based techniques, as they are less dependent on
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operator interaction and are much faster when multiple small lesions need to be
identified. However, they have been shown to underestimate lesion volume by
10%-20% [1],[2],[3]. The fact that lesions are typically small relative to voxel size
(10-500 voxels), and thus have a high percentage of voxels at their boundary,
suggests that PV effects account for much of this error.

With this application in mind, we will use the term 'lesion' equivalent to 'an
object of interest in an 3D MR image'.

2 Related Work

Soltanian-Zadeh et al. [4] presented a feature space analysis method for MR images
which includes a correction for PV effects. Their approach is aimed at obtaining
maximum image information from two or more of registered MR images showing
different contrast. Accordingly, two or more intensity values are available for each
image voxel. A statistical analysis of partial volume tissue classification, relying
again on vector valued images, has been suggested by Choi et al. [5]; in contrast,
we seek to obtain maximum information from a scalar valued image.

More recently Santago and Gage [6] have shown that a model of PV effects can
also be incorporated in the statistical analysis of scalar valued images. However,
in contrast to the correction presented here, their method dispenses completely
with the spatial information of the image.

Koenderink and coworkers have developed a rigorous mathematical treatment
of object shape at multiple resolutions (see e.g. [7]). They show how image resolu-
tion is responsible for changes of object shape ('blurring'). Although our method
extracts sub-voxel information from the image, it does not deal with reversing the
effect of blurring. Hence, we appreciate Koenderink's concept of scale space as it
shows that we have to expect limitations on the accuracy of our correction.

3 Theory and Computer Simulation

Our aim is to measure the volume of an arbitrarily shaped lesion, which can be
identified as an object because at least its interior voxels have intensity values dif-
ferent from the background. We use the term 'interior' voxel for a voxel completely
filled by object intensity. A minimum size of an object to be considered is given by
the requirement that there is at least one interior voxel. For the sake of simplicity
we assume that the object background is either of higher or of lower intensity than
the object (homogeneous background). We further assume that the data values
of the volumetric MR image represent intensity values which are averaged over a
voxel (of any shape). Finally, we only encounter PV effects as introduced above if
lesions possess well-defined boundaries, i.e. if transition regions between lesion and
background are small compared to voxel size. We introduce the term geometric
PV first and consider then how to correct PV with respect to the local intensity
distribution in the image.
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3.1 Geometric Partial Volume

We define geometric partial volume Vgpv as the true volume VtrUe of an object
minus the volume of its interior voxels. We expect Vgpv to be proportional to the
number of boundary voxels, or, in the same way, to the surface area of the object.
In initial experiments we found the latter measure to be more accurate.

In order to test the hypothesized dependence of Vgpv on surface area, we con-
sider various synthetic objects created by a thresholded distributions of Coulomb
charges (fig. la). The true volumes of these objects are accessible with arbitrary
accuracy. Image sampling is simulated by placing the objects in a grid made up
by cuboidal voxels. Vgp\r can be determined for each object for the given grid
resolution.
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Figure 1: Geometric PV versus surface area (obtained by surface reconstruction).
a. Four different objects of various sizes, obtained by thresholding from one up to four Coulomb
charges, at a certain voxel size. The dashed lines indicates the result of linear regression for
spheres.
b. Spheres with diameters ranging from 3 to 33 mm at different voxel sizes.
Data points in a. and b. are averaged over translations of the object origins by ten increments
along the voxel diagonal line. Error bars represent maximum deviation of the mean due to this
"phase" effect.

Surface areas of objects are computed by a modified 'Marching Cubes' algo-
rithm [8],[9]. This local method of surface reconstruction is applicable to our
synthetic objects placed in grids as well as to real objects in MR datasets, yielding
triangular surfaces of the same quality in both cases. Connected groups of internal
voxels in the MR image (or grid points of the charge distributions) are covered
by the same surface. In contrast to surfaces constructed by the original Marching
Cubes algorithm [8], surfaces constructed according to [9] are guaranteed to be
leakless.

As figure la shows, Vgpv increases linearly with surface area and is essentially
independent of object shape. Therefore, knowledge of the surface area of an arbi-
trary object sampled at a known voxel size allows us to find its geometric partial
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volume Vgpv, by looking up the geometric partial volume of a sphere of the same
surface area sampled at the same voxel size. The result of linear regression on
Vgpv of spheres is given by the dashed line in figure la.

In figure lb, geometric partial volume is plotted for spheres sampled at two
different voxel sizes. As expected, Vgpv increases with voxel size.

3.2 Intensity-based Partial Volume Correction

Geometric PV Vgpv represents the upper boundary of PV losses an object can
suffer. For a volume Vthresh obtained by intensity thresholding, volume under-
estimation due to neglecting partially filled voxels is always less severe than it is
predicted by geometric PV (Vtrue — Vthresh < Vgpv), since some almost completely
filled voxels are taken into account for Vthresh- Moreover, if the number of par-
tially filled voxels taken into account for Vthresh is large enough, Vthresh may even
overestimate true lesion volume Vtrue, since the partially filled voxels contribute
to Vthresh with their complete volume. To eliminate the effect of thresholding, we
desire a volume correction Vcorr so that ideally Vtrue — Vthresh + Vcorr, or that at
least the corrected Vthresh lies closer to Vtrue-

We assume that interior lesion voxels may possess a range of intensities within
the interval [Imin, Imax]- By considering only these interior voxels, an intensity
probability distribution P(IL) of lesion intensities II not affected by PV averaging
is computed for each lesion. In the case of a bright lesion surrounded by a lower
mean background intensity hg < Imin, the lower intensity threshold Imin is rele-
vant with respect to the boundary definition of the lesion. For a lesion intensity
Ii, Imin < II < Imax, at a threshold /m,-n, boundary voxels which are partially
filled to a threshold fraction of

" {iL-hg) ^ }

and greater are regarded as lesion voxels. Their complete volume is contained by
Vthresh-

The further treatment of the problem would be straightforward if we assume
all degrees of partially filling to occur with the same probability. This is the case
if cuboidal objects are randomly sampled by aligned cuboidal voxels. However, we
found it necessary to consider a more realistic probability distribution pjm{x) of
degrees of fillings x, as e.g. pjm for a sphere sampled by cuboidal voxels (see fig.

To understand qualitatively how such non-constant distributions can arise, we
may consider a sphere sampled by spherical voxels. This case is simpler than
the case of cuboidal voxels, since the distance d between sampling and sampled
sphere is the only parameter determining the degree of partial filling x. Due to
the curvature of the sampled sphere the relationship between d and x is not linear.
An interval of degree of filling at one distance \x{d{) — x(d\ + A)| is generally not
equal to the interval \x(d2) — x(d2 + A)| at another distance. Since due to random
sampling all distances d are equally probable, not all degrees of filling x are equally
probably. We found it sufficiently accurate to determine the probability of degrees
of filling by placing spheres randomly in a cuboidal grid and counting degrees
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Figure 2: Probability distribution of degrees of filling of cuboidal voxels of size 1.0 X 1.0 X 1.0
mm by spheres. In a., a sphere of 3 mm diameter yields an asymmetric distribution, whereas
in b., a sphere 33 mm diameter yields an almost symmetric distribution. The amount of the
deviation from symmetry is indicated by the dashed line. The wiggles in a. and b. are due to
the fact that the graph was obtained by a Monte-Carlo simulation. For each of the graphs 105

partially filled voxels was examined.

of filling. This Monte-Carlo method avoids problems connected with deriving
these distributions analytically. We emphasize that only at this point does the
additional assumption of cuboidal voxel shape enter our model. This assumption
is appropriate for the case of MR images.

Figure 2a shows that for spheres which are small compared to voxel size, i.e.,
spheres with a relatively large curvature, less filled voxels are more likely than
almost filled ones. For large spheres (2b), the distribution becomes almost sym-
metrical, with maxima for the lowest and highest degrees of filling. Comparing
distributions for spheres to those for the other synthetic objects shown in figure
1 of the same surface areas did not yield a significant difference. Hence, we ap-
proximate the statistic of partially filled voxels pjm of an arbitrary object by the
statistic of a sphere of the same surface area.

Geometric PV Vgpv is assumed to add up according to pjm. The contribution
of each degree of filling x to Vgpv is given by f(x) = c\ x pjm{x), with the con-
stant ci chosen so that fQ, f(x) dx = Vgpv • In order to find the partial volume
overestimated by counting almost filled voxels as full we also need the complimen-
tary function f(x) = c% (1 — x)pjni(x), expressing how x contributes to a Vgpv
made up by the not filled voxel volumes. Again, C2 is determined by the require-
ment f~ f(x) dx = Vgpv • PV correction for a lesion intensity II is obtained by
summing up PV according to f(x) for x = 0+ up to the threshold x = t (equation
1), and subtracting overestimated PV according to f(x) for x = t up to x = 1 —.
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The following equation summarizes partial volume correction:

vcorr =
100

ii))- (2)

Lesion intensities are treated as integer values and degrees of partial filling and
the statistic of filling are partitioned into 100 bins denoted by x(i) and Pfni(i),
respectively. The threshold degree of partial filling is denoted by the threshold bin
tbin •

At an optimal threshold topt, the second term correcting for overestimated PV
cancels the first term for underestimated PV. We use the term 'optimal' threshold
since at this point the correction crosses zero and the volume Vthresh obtained
by thresholding can be expected to lie close to Vtrue- The value of topt depends
on the shape of the pjni- However, for a symmetric distribution of partial filling
Pfui(%) = P/«7/(l — %), the optimal threshold is always topt = 0.5, i.e. midway
between lesion and background intensity, which matches ones intuitive expectation.
For the distributions we have encountered so far (fig. 2) we found topt in the range
of 0.45 < V <0.5.

For each lesion the 'scaled relevant threshold'

r* _ \lmin ~ hg) ,os

(II - kg)

0 < /* < 1, obtained by replacing the lesion intensity //, in equation (1) by
its mean value //,, indicates the average cut-off point of degree of filling, above
which intensity is considered as lesion intensity and below which it is not. /*
depends essentially on the selection of the with respect to the lesion background
relevant intensity threshold, in our case Im%n. Accordingly, for /* > topt, Vthresh is
expected to underestimate Vtrue, for /* = topt, Vthresh will be close to Vtrue, and
for 7* < topt, Vthresh is expected to overestimate Vtrue-

An unavoidable circularity of our method turns out to be not severe. When a
correction is applied, we do not know the surface area of a lesion at the optimal
threshold /* = topi, but only the surface area of the thresholded lesion. This
uncorrected value of the surface area is used to estimate Vgpv (which in turn
determines c\ and C2 in equation 2). However, generally surface area increases less
than linearly with increasing lesion volume. Applying our method to MR images,
we found lesion surface area to be much less sensitive against threshold variations
than lesion volume.

4 Verification by Phantom Studies

Phantom lesions of various shapes and volumes ranging from 0.02 - 3.0 cm3 made
from paraffin wax were embedded into an agarose gel. By measuring the density
of the wax, their true volumes Vtrue could be derived from their weight within
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a confidence interval of 2%. Several 3D- and multislice imaging experiments,
performed on a Philip ACS/II 1.5 T scanner, yielded data sets of voxel sizes
between 0.5 x 0.5 x 1.0 and 2.0 x 2.0 x 2.0 mm. Fig. 3a shows a slice of one of
these data volumes. The fact that the magnetic resonant signal of paraffin is much
weaker than the signal of the surrounding gel, leads to images of inverse contrast.
This inverse case can be treated as completely analogous to the case discussed so
far. E.g., in this case I* is defined by the upper lesion defining threshold IImax,

(h-h9) •

a. wmmmKmm-m*mmmi b.

Figure 3: a. Paraffin phantom lesions appear as dark spots in a Spin Echo MR image. The
voxel size is 1.0 X 1.0 X 1.0 mm. b. A slice of a FLuid Attenuated Inversion Recovery (FLAIR)
MR image of a brain shows MS lesions as bright spots. The voxel size is 0.9 X 0.9 X 2.0 mm.

In figure 4, the relative deviation e of the uncorrected volume Vthresh and the
corrected volume Vthresh + Vcorr from the true volume Vtrue are plotted versus the
scaled relevant threshold /*.

For a lesion of 9 mm linear size at a voxel size of 2 x 2 x 1 mm (fig. 4a),
a scaled threshold in the range of 0.74 > 7* > 0.38 leads to an error range of
uncorrected volumes of —36.2 < euncorr < 19.1 percent. For a lesion of this size
at the given voxel size, our correction crosses zero at scaled threshold 7* = 0.46
(note that this root of the correction is given in each of the graphs of fig. 4 by
the intersection point of the corrected und uncorrected error). The correction
keeps the volume at an almost constant value. However, it overestimates the
ground truth Vtrue by about 7%. This error is likely to be caused to a large
part by an underestimation of the true volume of the phantom. Therefore, for
range 0.55 > 7* > 0.45, the uncorrected volume lies closer to Vtrue than the
corrected volume. We have included this result as an example of less than average
performance of our method.

In figure 4b, a result above average is shown. Over the full realized range of /*
apart from the zero crossing of the correction at /* — 0.48, the corrected volume
approximates the known volume better than the uncorrected volume Vthresh- The
slope of Vthresh is effectively suppressed.
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Figure 4: Relative errors of volume measurements without PV corrections eUncorr = |Vthresh ~

Vtrue|/Vtrue ( n) , and with PV corrections tCOTT = |Vt(,res^ + VCOrr — VtTUe\/Vtrue (•)•
a. A phantom lesion of Vtrue — 420 mm3 (« 9 mm linear size) at a voxel size of 2 X 2 X 1 mm.
b. A phantom lesion of Vtrue = 968 mm3 (ss 12 mm linear size) at a voxel size of 1 X 1 X 1 mm.

The following statements summarize our results:
a) At 7* = topt, our correction crosses zero and volumes obtained by thresh-

olding agree within their error bounds with the known volumes Vtrut-
b) As expected, PV effects become significant for /* < 0.4 or I* > 0.6 and

their relative importance increases with increasing voxel size and decreasing lesion
size.

c) Except for the interval 0.4 < I* < 0.6, relative errors of corrected volumes
were smaller by at least a factor of two compared to relative errors of uncorrected
volumes obtained by thresholding.

d) Within the interval 0.4 < I* < 0.55, uncorrected volumes are occasionally
closer to the true volume than corrected volumes, if Vjrue deviates from the mea-
sured volume at I* = topt- However, these differences are rarely more than 5.0%
and our correction can safely be applied over the full range of /*.

e) Compared to uncorrected volumes, corrected volumes are essentially con-
stant over the entire range of I*. This fact shows that the circularity of using
uncorrected values for surface area does not have a major impact on volume cor-
rection. For our phantoms, we found surface area to increase slightly with decreas-
ing /*, and to vary in some cases unsystematically with I*. These variations of
surface area are responsible for the remaining variations of the corrected volumes.
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5 Application to Multiple Sclerosis Lesions

Whereas for our phantom images it is possible to obtain results of volume mea-
surements for large range of intensity thresholds (0.3 < I* < 0.9), this is not the
case for MR images of the brain with enhanced contrast for MS lesions. Due to
a higher fraction of noise in the image and the adjacency of other objects to MS
lesions in image space as well as in intensity space, only a small band of 'possible'
threshold intensities, varying for each lesion in the image, is applicable in order
to obtain good intra-lesion connectivity and a sensible boundary definition. For
the scan of a brain shown in figure 3b, we found these possible thresholds I^,ossihie

to deviate for various lesions substantially from the optimal thresholds /* = topt

(0.35 < Ipossnie < O-̂ ) whereas 0.45 < topi < 0.5). In these cases, volume correc-
tion is necessary. Relative differences between corrected and uncorrected volumes
ranged up to 20%.

6 Discussion and Conclusion

We propose a systematic correction method for PV errors which arise when using
intensity-based methods for estimating volumes in MR images. No adjustable
parameters are required. We have shown that the correction improves accuracy
and consistency of volume measurements in MR phantom and that it is applicable
to MR brain data.

An alternative method of dealing with volume quantitation in sampled images
would be the following. For a volume V containing the lesion as well as some back-
ground, the background intensity hg divided by the average voxel intensity Iave

measures lesion volume: Viesion = ((IaVe — hg)/Iave)V. This method circumvents
geometrical considerations elegantly by taking intensities averaged by PV effects
into account as such. As a potential disadvantage, its accuracy depends directly
on the estimation of the background intensity. This is not the case for the method
presented here, where the magnitude of PV averaging is additionally determined
by the surface area of the defined object. Furthermore, the purely intensity-based
method does not define objects and hence does not allow visual control of what
parts of the volume are counted as lesion volume. In future work we will compare
the two approaches in detail and evaluate the accuracies achieved.

So far our correction is implemented only for simple thresholding in a one-
dimensional histogram. The concept can be extended to other intensity-based
segmentation methods; its implementation for intensity-based region growing seg-
mentation is under way.
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